Algebra I Vocabulary Cards Table of Contents

Expressions and Operations

Natural Numbers

Whole Numbers

Integers

Rational Numbers

Irrational Numbers

Real Numbers

Absolute Value

Order of Operations

Expression

Variable

Coefficient

Term

Scientific Notation

Exponential Form

Negative Exponent

Zero Exponent

Product of Powers Property

Power of a Power Property

Power of a Product Property

Quotient of Powers Property

Power of a Quotient Property

Polynomial

Degree of Polynomial

Leading Coefficient

Add Polynomials (group like terms)

Add Polynomials (align like terms)

Subtract Polynomials (group like terms)

Subtract Polynomials (align like terms)

Multiply Polynomials

Multiply Binomials

Multiply Binomials (model)

Multiply Binomials (graphic organizer)

Multiply Binomials (squaring a binomial)

Multiply Binomials (sum and difference)

Factors of a Monomial

Factoring (greatest common factor)

Factoring (perfect square trinomials)

Factoring (difference of squares)

Difference of Squares (model)

Divide Polynomials (monomial divisor)

Divide Polynomials (binomial divisor)

Prime Polynomial

Square Root

Cube Root

Product Property of Radicals

Quotient Property of Radicals

Zero Product Property

Solutions or Roots

Zeros

x-Intercepts

Equations and Inequalities

Coordinate Plane

Linear Equation

Linear Equation (standard form)

Literal Equation

Vertical Line

Horizontal Line

Quadratic Equation

Quadratic Equation (solve by factoring)

Quadratic Equation (solve by graphing)

Quadratic Equation (number of solutions)

Identity Property of Addition

Inverse Property of Addition

Commutative Property of Addition

Associative Property of Addition

Identity Property of Multiplication

Inverse Dramoutive of Navitialization

Inverse Property of Multiplication

Commutative Property of Multiplication

Associative Property of Multiplication

Distributive Property

Distributive Property (model)

Multiplicative Property of Zero

Substitution Property

Reflexive Property of Equality

Symmetric Property of Equality

Transitive Property of Equality

Inequality

Graph of an Inequality

Transitive Property for Inequality

Addition/Subtraction Property of Inequality

Multiplication Property of Inequality

Division Property of Inequality

Linear Equation (slope intercept form)

Linear Equation (point-slope form)

Slope

Slope Formula

Slopes of Lines

Perpendicular Lines

Parallel Lines

Mathematical Notation

System of Linear Equations (graphing)

System of Linear Equations (substitution)

System of Linear Equations (elimination)

System of Linear Equations (number of solutions)

Graphing Linear Inequalities

System of Linear Inequalities

Dependent and Independent Variable

Dependent and Independent Variable (application)

Graph of a Quadratic Equation

Quadratic Formula

Relations and Functions

Relations (examples)

Functions (examples)

Function (definition)

Domain

Range

Function Notation

Parent Functions

Linear, Quadratic

Transformations of Parent Functions

- Translation
- Reflection
- Dilation

Linear Function (transformational graphing)

- Translation
- Dilation (m>0)
- Dilation/reflection (m<0)

Quadratic Function (transformational graphing)

- Vertical translation
- Dilation (a>0)
- Dilation/reflection (a<0)
- Horizontal translation

Direct Variation

Inverse Variation

Statistics

Statistics Notation

Mean

Median

Mode

Box-and-Whisker Plot

Summation

Mean Absolute Deviation

Variance

Standard Deviation (definition)

z-Score (definition)

z-Score (graphic)

Elements within One Standard Deviation of the

Mean (graphic)

Scatterplot

Positive Correlation

Negative Correlation

No Correlation

Curve of Best Fit (linear/quadratic)

Outlier Data (graphic)

Revisions:

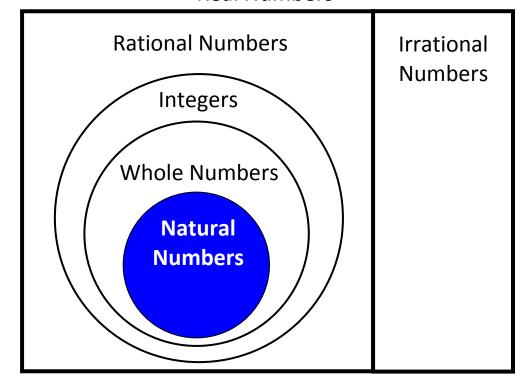
October 2014 – removed Constant Correlation; removed negative sign on Linear Equation (slope intercept form)

July 2015 – Add Polynomials (removed exponent); Subtract Polynomials (added negative sign); Multiply Polynomials (graphic organizer)(16x and 13x); Z-Score (added z = 0)

Natural Numbers

The set of numbers 1, 2, 3, 4...

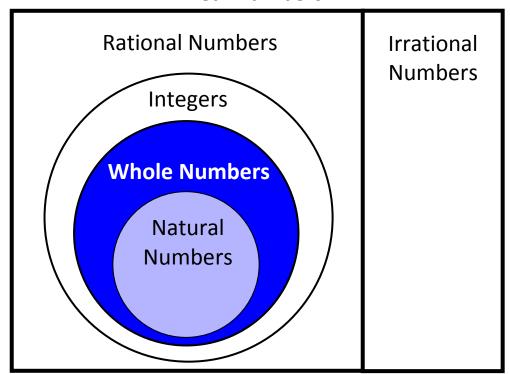
Real Numbers



Whole Numbers

The set of numbers 0, 1, 2, 3, 4...

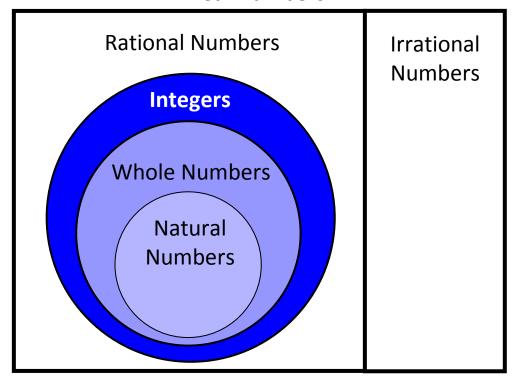
Real Numbers



Integers

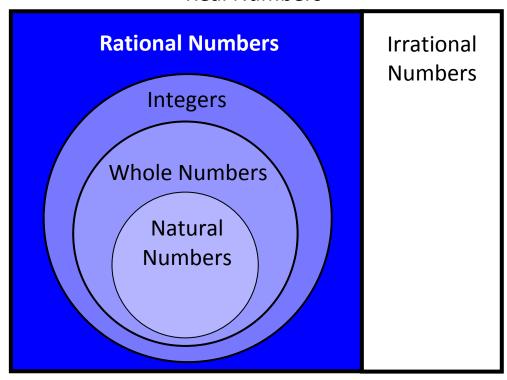
The set of numbers ...-3, -2, -1, 0, 1, 2, 3...

Real Numbers



Rational Numbers

Real Numbers

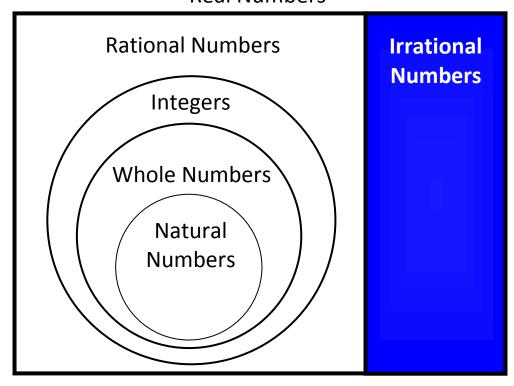


The set of all numbers that can be written as the ratio of two integers with a non-zero denominator

$$2\frac{3}{5}$$
, -5, 0.3, $\sqrt{16}$, $\frac{13}{7}$

Irrational Numbers

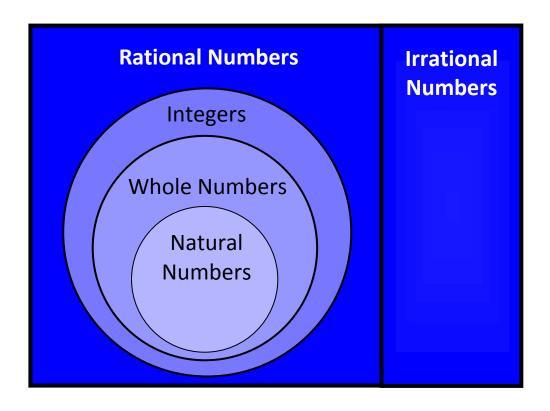
Real Numbers



The set of all numbers that cannot be expressed as the ratio of integers

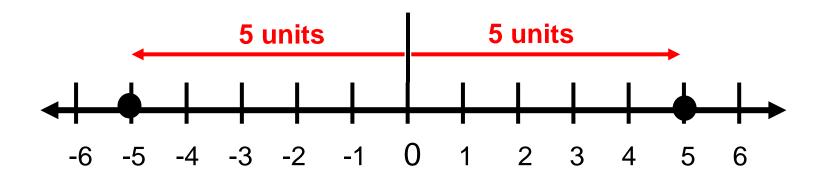
 $\sqrt{7}$, π , -0.2322322232223...

Real Numbers



The set of all rational and irrational numbers

Absolute Value



The distance between a number and zero

Order of Operations

Grouping Symbols |absolute value| fraction bar Exponents Multiplication **Left to Right** Division **Addition Left to Right** Subtraction

Expression

X

$$-\sqrt{26}$$

$$3^4 + 2m$$

$$3(y+3.9)^2-\frac{8}{9}$$

Variable

$$2(y) + \sqrt{3}$$

$$9 + x = 2.08$$

$$(d)=7(c)-5$$

$$(A) = \pi (r)^2$$

Coefficient

$$(-4) + (2)x$$

$$(-7)y^2$$

$$(2)ab - \frac{1}{2}$$

$$(\pi)r^2$$

Term

$$3x + 2y - 8$$

3 terms

$$-5x^2-x$$

2 terms

$$\frac{2}{3}ab$$

1 term

Scientific Notation

 $a \times 10^{n}$

 $1 \le |a| < 10$ and n is an integer

Standard Notation	Scientific Notation
17,500,000	1.75 x 10 ⁷
-84,623	-8.4623 x 10 ⁴
0.000026	2.6 x 10 ⁻⁶
-0.080029	-8.0029 x 10 ⁻²

Exponential Form

exponent
$$a^{n} = a \cdot a \cdot a \cdot a \cdot \dots, a \neq 0$$
base
factors

$$2 \cdot 2 \cdot 2 = 2^3 = 8$$

$$n \cdot n \cdot n \cdot n = n^4$$

$$3 \cdot 3 \cdot 3 \cdot x \cdot x = 3^3 x^2 = 27x^2$$

Negative Exponent

$$a^{-n}=\frac{1}{a^n}$$
 , $a\neq 0$

$$4^{-2} = \frac{1}{4^2} = \frac{1}{16}$$

$$\frac{x^4}{y^{-2}} = \frac{x^4}{\frac{1}{y^2}} = \frac{x^4}{\frac{1}{y^2}} \cdot \frac{y^2}{y^2} = x^4 y^2$$

$$(2-a)^{-2} = \frac{1}{(2-a)^2}, a \neq 2$$

Zero Exponent

$$a^0 = 1$$
, $a \neq 0$

$$(-5)^{0} = 1$$

 $(3x + 2)^{0} = 1$
 $(x^{2}y^{-5}z^{8})^{0} = 1$
 $4m^{0} = 4 \cdot 1 = 4$

Product of Powers Property

$$a^m \cdot a^n = a^{m+n}$$

$$x^4 \cdot x^2 = x^{4+2} = x^6$$

$$a^3 \cdot a = a^{3+1} = a^4$$

$$w^7 \cdot w^{-4} = w^{7 + (-4)} = w^3$$

Power of a Power Property

$$(a^m)^n = a^{m \cdot n}$$

$$(y^4)^2 = y^{4\cdot 2} = y^8$$

$$(g^2)^{-3} = g^{2\cdot(-3)} = g^{-6} = \frac{1}{g^6}$$

Power of a Product Property

$$(ab)^m = a^m \cdot b^m$$

$$(-3ab)^2 = (-3)^2 \cdot a^2 \cdot b^2 = 9a^2b^2$$

$$\frac{-1}{(2x)^3} = \frac{-1}{2^3 \cdot x^3} = \frac{-1}{8x^3}$$

Quotient of Powers Property

$$\frac{a^m}{a^n}=a^{m-n},\ a\neq 0$$

$$\frac{x^6}{x^5} = x^{6-5} = x^1 = x$$

$$\frac{y^{-3}}{y^{-5}} = y^{-3} - (-5) = y^2$$

$$\frac{a^4}{a^4} = a^{4-4} = a^0 = 1$$

Power of Quotient Property

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$$

$$\left(\frac{y}{3}\right)^4 = \frac{y^4}{3^4}$$

$$\left(\frac{5}{t}\right)^{-3} = \frac{5^{-3}}{t^{-3}} = \frac{\frac{1}{5^3}}{\frac{1}{t^3}} = \frac{t^3}{5^3} = \frac{t^3}{125}$$

Polynomial

Example	Name	Terms
7 6 <i>x</i>	monomial	1 term
$3t - 1$ $12xy^3 + 5x^4y$	binomial	2 terms
$2x^2 + 3x - 7$	trinomial	3 terms

Nonexample	Reason
5m ⁿ -8	variable
	exponent
n ⁻³ +9	negative
	exponent

Degree of a Polynomial

The largest exponent or the largest sum of exponents of a term within a polynomial

Example:

$$6a^3 + 3a^2b^3 - 21$$

Term	Degree
6 <i>a</i> ³	3
$3a^2b^3$	5
-21	0

Degree of polynomial:

5

Leading Coefficient

The coefficient of the first term of a polynomial written in descending order of exponents

$$7a^3 - 2a^2 + 8a - 1$$

$$-3n^3 + 7n^2 - 4n + 10$$

$$16t - 1$$

Add Polynomials

Combine like terms.

Example:

$$(2g^2 + 6g - 4) + (g^2 - g)$$

$$= 2g^2 + 6g - 4 + g^2 - g$$

(Group like terms and add.)

$$= (2g^2 + g^2) + (6g - g) - 4$$

$$=3g^2+5g-4$$

Add Polynomials

Combine <u>like</u> terms.

Example:

$$(2g^3 + 6g^2 - 4) + (g^3 - g - 3)$$

(Align like terms and add.)

$$2g^{3} + 6g^{2} - 4$$

$$+ g^{3} - g - 3$$

$$3g^{3} + 6g^{2} - g - 7$$

Subtract Polynomials

Add the inverse.

Example:

$$(4x^2 + 5) - (-2x^2 + 4x - 7)$$

(Add the inverse.)

$$= (4x^2 + 5) + (2x^2 - 4x + 7)$$

$$= 4x^2 + 5 + 2x^2 - 4x + 7$$

(Group like terms and add.)

$$= (4x^2 + 2x^2) - 4x + (5 + 7)$$

$$=6x^2-4x+12$$

Subtract Polynomials

Add the inverse.

Example:

$$(4x^2 + 5) - (-2x^2 + 4x - 7)$$

(Align like terms then add the inverse and add the like terms.)

$$4x^{2} + 5 4x^{2} + 5$$

$$-(-2x^{2} + 4x - 7) \longrightarrow + 2x^{2} - 4x + 7$$

$$6x^{2} - 4x + 12$$

Multiply Polynomials

$$(a + b)(d + e + f)$$

$$(a+b)(d+e+f)$$

$$= a(d + e + f) + b(d + e + f)$$

$$= ad + ae + af + bd + be + bf$$

Multiply Binomials

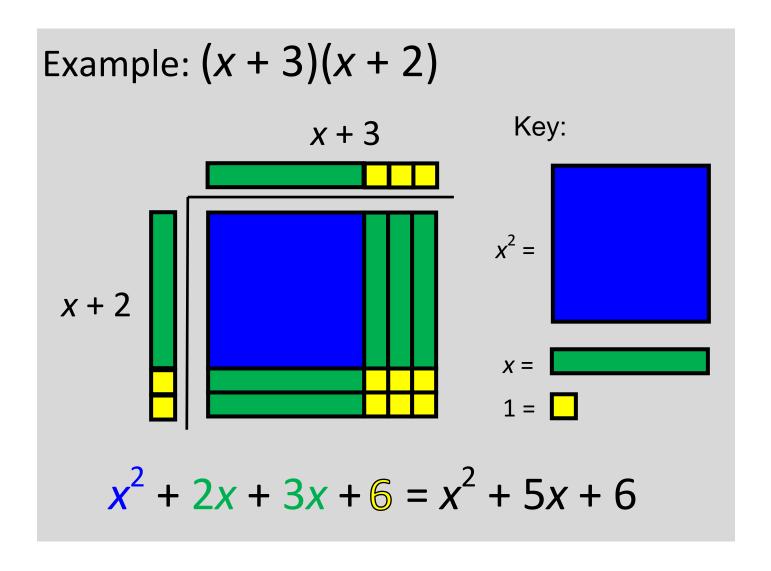
$$(a + b)(c + d) =$$

 $a(c + d) + b(c + d) =$
 $ac + ad + bc + bd$

Example:
$$(x + 3)(x + 2)$$

= $x(x + 2) + 3(x + 2)$
= $x^2 + 2x + 3x + 6$
= $x^2 + 5x + 6$

Multiply Binomials



Multiply Binomials

Multiply Binomials: Squaring a Binomial

$$(a + b)^2 = a^2 + 2ab + b^2$$

 $(a - b)^2 = a^2 - 2ab + b^2$

$$(3m + n)^2 = 9m^2 + 2(3m)(n) + n^2$$

= $9m^2 + 6mn + n^2$

$$(y-5)^2 = y^2 - 2(5)(y) + 25$$

= $y^2 - 10y + 25$

Multiply Binomials: Sum and Difference

$$(a + b)(a - b) = a^2 - b^2$$

$$(2b+5)(2b-5)=4b^2-25$$

$$(7 - w)(7 + w) = 49 + 7w - 7w - w^{2}$$

= $49 - w^{2}$

Factors of a Monomial

The number(s) and/or variable(s) that are multiplied together to form a monomial

Examples:	Factors	Expanded Form	
5 <i>b</i> ²	5·b ²	5· <i>b</i> · <i>b</i>	
$6x^2y$	$6\cdot x^2\cdot y$	2·3· <i>x</i> · <i>x</i> · <i>y</i>	
$\frac{-5p^2q^3}{2}$	$\frac{-5}{2} \cdot p^2 \cdot q^3$	$\frac{1}{2} \cdot (-5) \cdot p \cdot p \cdot q \cdot q \cdot q$	

Factoring: Greatest Common Factor

Find the greatest common factor (GCF) of all terms of the polynomial and then apply the distributive property.

Example:
$$20a^4 + 8a$$

$$2 \cdot 5 \cdot a \cdot a \cdot a + 2 \cdot 2 \cdot 2 \cdot a$$

common factors

$$GCF = 2 \cdot 2 \cdot a = 4a$$

$$20a^4 + 8a = 4a(5a^3 + 2)$$

Factoring: Perfect Square Trinomials

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$

 $a^{2} - 2ab + b^{2} = (a - b)^{2}$

$$x^{2} + 6x + 9 = x^{2} + 2 \cdot 3 \cdot x + 3^{2}$$

= $(x + 3)^{2}$

$$4x^{2} - 20x + 25 = (2x)^{2} - 2 \cdot 2x \cdot 5 + 5^{2}$$
$$= (2x - 5)^{2}$$

Factoring: Difference of Two Squares

$$a^2 - b^2 = (a + b)(a - b)$$

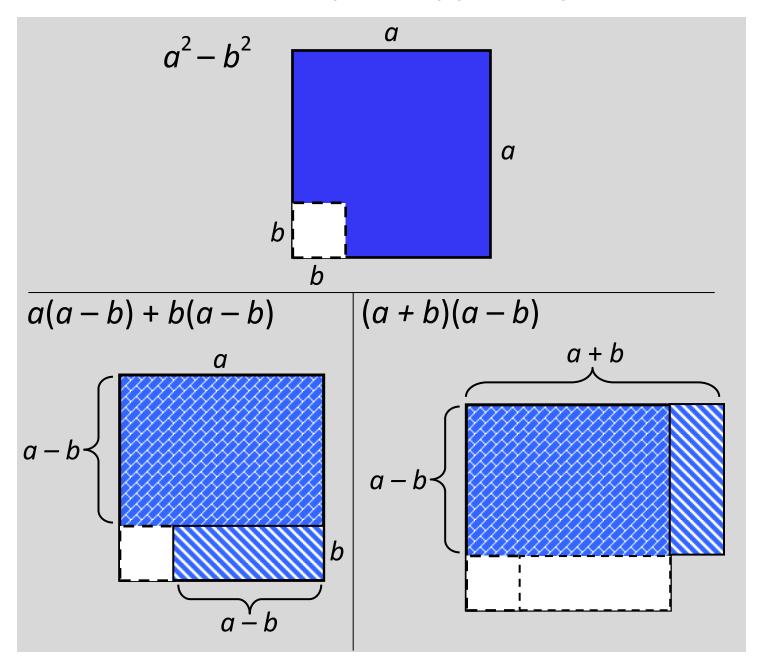
$$x^{2}-49=x^{2}-7^{2}=(x+7)(x-7)$$

$$4-n^2=2^2-n^2=(2-n)(2+n)$$

$$9x^{2} - 25y^{2} = (3x)^{2} - (5y)^{2}$$
$$= (3x + 5y)(3x - 5y)$$

Difference of Squares

$$a^2 - b^2 = (a + b)(a - b)$$



Divide Polynomials

Divide each term of the dividend by the monomial divisor

$$(12x^3 - 36x^2 + 16x) \div 4x$$

$$=\frac{12x^3 - 36x^2 + 16x}{4x}$$

$$= \frac{12x^3}{4x} - \frac{36x^2}{4x} + \frac{16x}{4x}$$

$$=3x^2-9x+4$$

Divide Polynomials by Binomials

Factor and simplify

$$(7w^2 + 3w - 4) \div (w + 1)$$

$$=\frac{7w^2+3w-4}{w+1}$$

$$=\frac{(7w-4)(w+1)}{w+1}$$

$$= 7w - 4$$

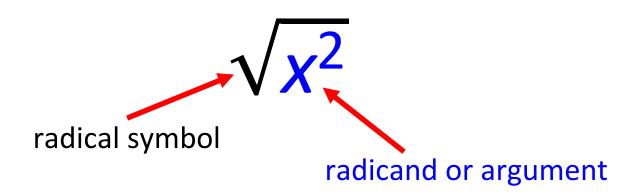
Prime Polynomial

Cannot be factored into a product of lesser degree polynomial factors

Example		
r		
3 <i>t</i> + 9		
$x^2 + 1$		
$5y^2 - 4y + 3$		

Nonexample	Factors	
$x^2 - 4$	(x + 2)(x - 2)	
$3x^2 - 3x + 6$	3(x+1)(x-2)	
x ³	$x \cdot x^2$	

Square Root



Simply square root expressions.

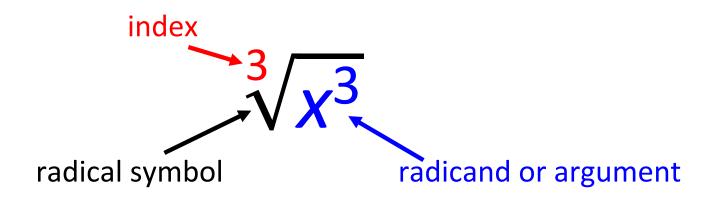
Examples:

$$\sqrt{9x^2} = \sqrt{3^2 \cdot x^2} = \sqrt{(3x)^2} = 3x$$

$$-\sqrt{(x-3)^2} = -(x-3) = -x + 3$$

Squaring a number and taking a square root are inverse operations.

Cube Root



Simplify cube root expressions.

Examples:

$$\sqrt[3]{64} = \sqrt[3]{4^3} = 4$$

$$\sqrt[3]{-27} = \sqrt[3]{(-3)^3} = -3$$

$$\sqrt[3]{x^3} = x$$

Cubing a number and taking a cube root are inverse operations.

Product Property of Radicals

The square root of a product equals the product of the square roots of the factors.

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$

 $a \ge 0$ and $b \ge 0$

$$\sqrt{4x} = \sqrt{4} \cdot \sqrt{x} = 2\sqrt{x}$$

$$\sqrt{5a^3} = \sqrt{5} \cdot \sqrt{a^3} = a\sqrt{5a}$$

$$\sqrt[3]{16} = \sqrt[3]{8 \cdot 2} = \sqrt[3]{8} \cdot \sqrt[3]{2} = 2\sqrt[3]{2}$$

Quotient Property of Radicals

The square root of a quotient equals the quotient of the square roots of the numerator and denominator.

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

 $a \ge 0$ and b > 0

$$\sqrt{\frac{5}{y^2}} = \frac{\sqrt{5}}{\sqrt{y^2}} = \frac{\sqrt{5}}{y}, \ y \neq 0$$

Zero Product Property

If
$$ab = 0$$
,
then $a = 0$ or $b = 0$.

Example:

$$(x + 3)(x - 4) = 0$$

 $(x + 3) = 0 \text{ or } (x - 4) = 0$
 $x = -3 \text{ or } x = 4$

The solutions are -3 and 4, also called roots of the equation.

Solutions or Roots

$$x^2 + 2x = 3$$

Solve using the zero product property.

$$x^{2} + 2x - 3 = 0$$

 $(x + 3)(x - 1) = 0$
 $x + 3 = 0$ or $x - 1 = 0$
 $x = -3$ or $x = 1$

The solutions or roots of the polynomial equation are -3 and 1.

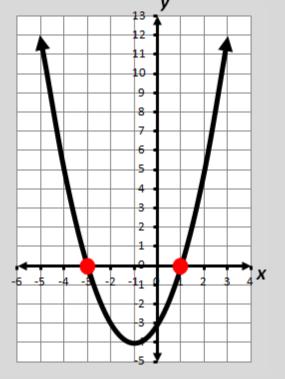
Zeros

The zeros of a function f(x) are the values of x where the function is equal to zero.

$$f(x) = x^2 + 2x - 3$$

Find $f(x) = 0$.

$$0 = x^{2} + 2x - 3$$
$$0 = (x + 3)(x - 1)$$
$$x = -3 \text{ or } x = 1$$



The zeros are -3 and 1 located at (-3,0) and (1,0).

The zeros of a function are also the solutions or roots of the related equation.

x-Intercepts

The x-intercepts of a graph are located where the graph crosses the x-axis and where f(x) = 0.

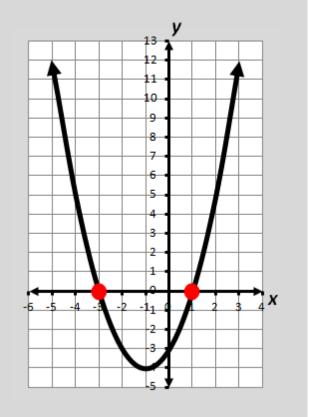
$$f(x) = x^2 + 2x - 3$$

$$0 = (x + 3)(x - 1)$$

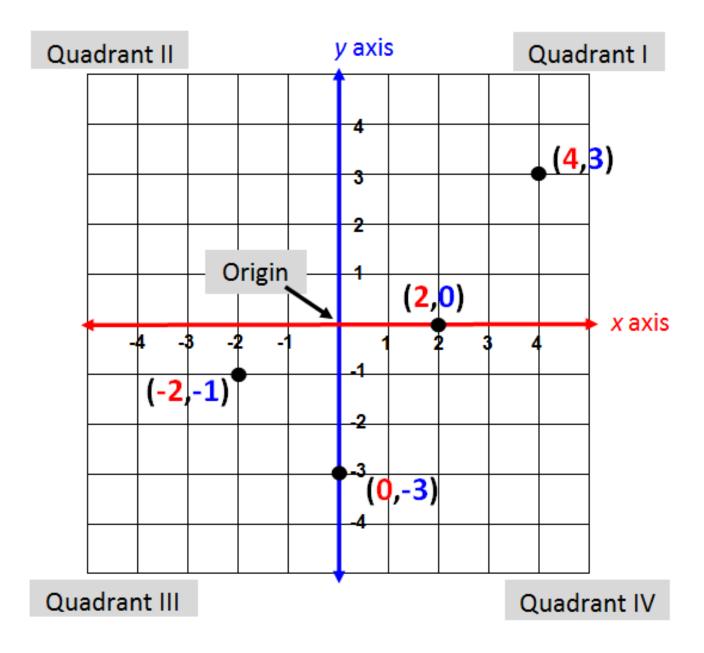
 $0 = x + 3 \text{ or } 0 = x - 1$
 $x = -3 \text{ or } x = 1$

The zeros are -3 and 1. The x-intercepts are:

- -3 or (-3,0)
- 1 or (1,0)



Coordinate Plane



ordered pair (x,y)

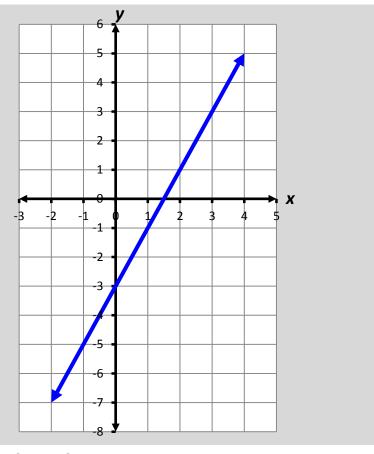
(abscissa, ordinate)

Linear Equation

$$Ax + By = C$$

(A, B and C are integers; A and B cannot both equal zero.)

$$-2x + y = -3$$



The graph of the linear equation is a straight line and represents all solutions (x, y) of the equation.

Linear Equation: Standard Form

$$Ax + By = C$$

(A, B, and C are integers; A and B cannot both equal zero.)

$$4x + 5y = -24$$

$$x - 6y = 9$$

Literal Equation

A formula or equation which consists primarily of variables

$$ax + b = c$$

$$A = \frac{1}{2}bh$$

$$V = Iwh$$

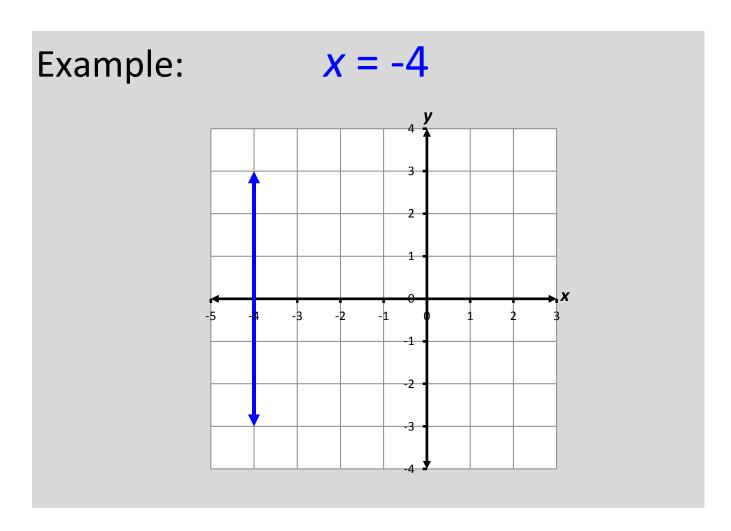
$$F = \frac{9}{5}C + 32$$

$$A = \pi r^2$$

Vertical Line

$$x = a$$

(where a can be any real number)

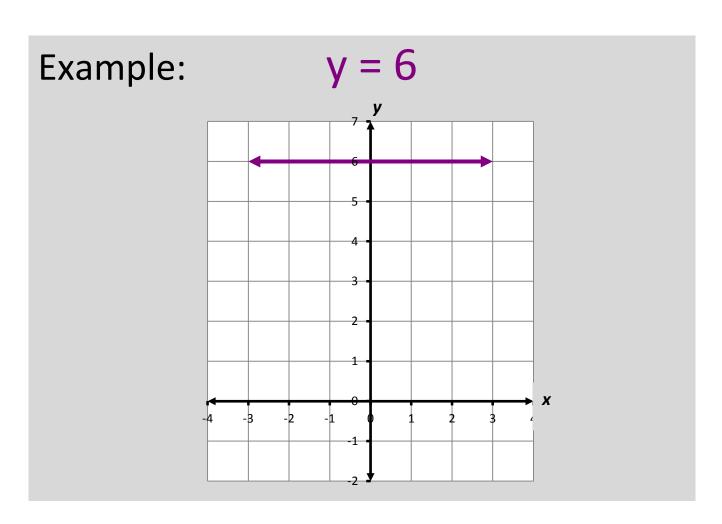


Vertical lines have an undefined slope.

Horizontal Line

$$y = c$$

(where c can be any real number)

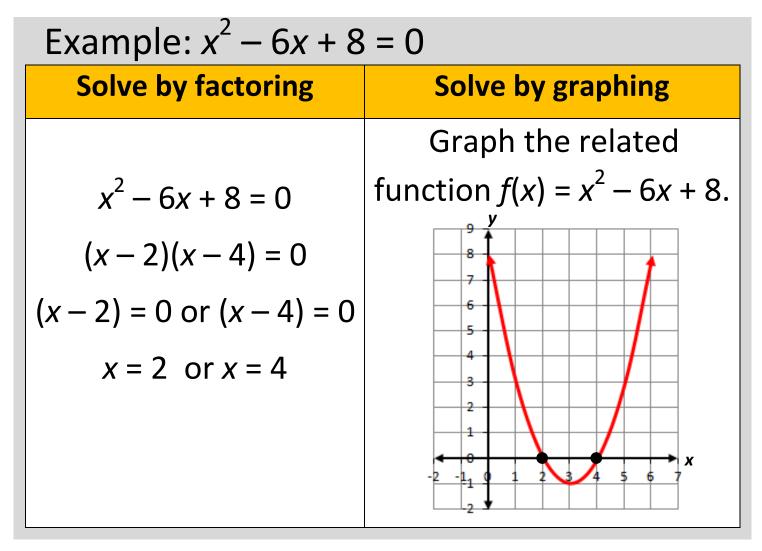


Horizontal lines have a slope of 0.

Quadratic Equation

$$ax^2 + bx + c = 0$$

$$a \neq 0$$



Solutions to the equation are 2 and 4; the *x*-coordinates where the curve crosses the *x*-axis.

Quadratic Equation

$$ax^2 + bx + c = 0$$

$$a \neq 0$$

Example solved by factoring:

$x^2 - 6x + 8 = 0$	Quadratic equation	
(x-2)(x-4)=0	Factor	
(x-2) = 0 or (x-4) = 0	Set factors equal to 0	
x = 2 or x = 4	Solve for x	

Solutions to the equation are 2 and 4.

Quadratic Equation

$$ax^{2} + bx + c = 0$$

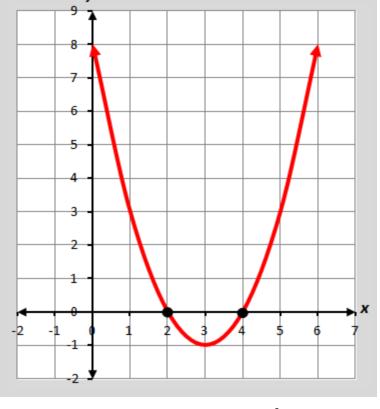
$$a \neq 0$$

Example solved by graphing:

$$x^2 - 6x + 8 = 0$$

Graph the related function

$$f(x) = x^2 - 6x + 8.$$



Solutions to the equation are the *x*-coordinates (2 and 4) of the points where the curve crosses the x-axis.

Quadratic Equation: Number of Real Solutions

$$ax^2 + bx + c = 0$$
, $a \ne 0$

Examples	Graphs	Number of Real Solutions/Roots
$x^2 - x = 3$	3 -2 1 1 2 3 4 x	2
$x^2 + 16 = 8x$	10 y 9 10 10 10 10 10 10 10 10 10 10 10 10 10	1 distinct root with a multiplicity of two
$2x^2 - 2x + 3 = 0$	10 V 3 P 4 P 5 P 4 P 5 P 7 P 8 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1	0

Identity Property of Addition

$$a + 0 = 0 + a = a$$

Examples:

$$3.8 + 0 = 3.8$$

$$6x + 0 = 6x$$

$$0 + (-7 + r) = -7 + r$$

Zero is the additive identity.

Inverse Property of Addition

$$a + (-a) = (-a) + a = 0$$

$$4 + (-4) = 0$$

$$0 = (-9.5) + 9.5$$

$$x + (-x) = 0$$

$$0 = 3y + (-3y)$$

Commutative Property of Addition

$$a + b = b + a$$

$$2.76 + 3 = 3 + 2.76$$

$$x + 5 = 5 + x$$

$$(a + 5) - 7 = (5 + a) - 7$$

$$11 + (b - 4) = (b - 4) + 11$$

Associative Property of Addition

$$(a + b) + c = a + (b + c)$$

$$\left(5+\frac{3}{5}\right)+\frac{1}{10}=5+\left(\frac{3}{5}+\frac{1}{10}\right)$$

$$3x + (2x + 6y) = (3x + 2x) + 6y$$

Identity Property of Multiplication

$$a \cdot 1 = 1 \cdot a = a$$

Examples:

$$3.8(1) = 3.8$$

$$6x \cdot 1 = 6x$$

$$1(-7) = -7$$

One is the multiplicative identity.

Inverse Property of Multiplication

$$a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$$

$$a \neq 0$$

Examples:

$$7 \cdot \frac{1}{7} = 1$$

$$\frac{5}{x} \cdot \frac{x}{5} = 1, x \neq 0$$

$$\frac{-1}{3} \cdot (-3p) = 1p = p$$

The multiplicative inverse of a is $\frac{1}{a}$.

Commutative Property of Multiplication

$$ab = ba$$

$$(-8)\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)(-8)$$

$$y \cdot 9 = 9 \cdot y$$

$$4(2x\cdot 3)=4(3\cdot 2x)$$

$$8 + 5x = 8 + x \cdot 5$$

Associative Property of Multiplication

$$(ab)c = a(bc)$$

$$(1 \cdot 8) \cdot 3\frac{3}{4} = 1 \cdot (8 \cdot 3\frac{3}{4})$$

$$(3x)x = 3(x \cdot x)$$

Distributive Property

$$a(b+c)=ab+ac$$

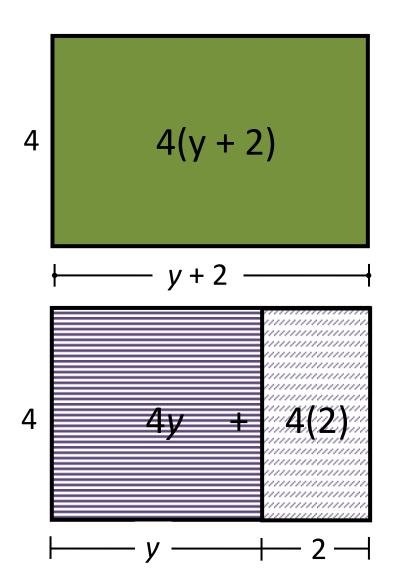
$$5\left(y-\frac{1}{3}\right)=(5\cdot y)-\left(5\cdot\frac{1}{3}\right)$$

$$2 \cdot x + 2 \cdot 5 = 2(x + 5)$$

$$3.1a + (1)(a) = (3.1 + 1)a$$

Distributive Property

$$4(y + 2) = 4y + 4(2)$$



Multiplicative Property of Zero

$$a \cdot 0 = 0$$
 or $0 \cdot a = 0$

$$8\frac{2}{3} \cdot 0 = 0$$

$$0 \cdot (-13y - 4) = 0$$

Substitution Property

If a = b, then b can replace a in a given equation or inequality.

Given	Given	Substitution
<i>r</i> = 9	3 <i>r</i> = 27	3(9) = 27
<i>b</i> = 5 <i>a</i>	24 < b + 8	24 < 5 <i>a</i> + 8
y = 2x + 1	2y = 3x - 2	2(2x + 1) = 3x - 2

Reflexive Property of Equality

$$a = a$$

a is any real number

$$-4 = -4$$

$$3.4 = 3.4$$

$$9y = 9y$$

Symmetric Property of Equality

If a = b, then b = a.

If
$$12 = r$$
, then $r = 12$.

If
$$-14 = z + 9$$
, then $z + 9 = -14$.

If
$$2.7 + y = x$$
, then $x = 2.7 + y$.

Transitive Property of Equality

If
$$a = b$$
 and $b = c$,
then $a = c$.

If
$$4x = 2y$$
 and $2y = 16$,
then $4x = 16$.

If
$$x = y - 1$$
 and $y - 1 = -3$,
then $x = -3$.

Inequality

An algebraic sentence comparing two quantities

Symbol	Meaning
<	less than
<u>≤</u>	less than or equal to
>	greater than
<u>></u>	greater than or equal to
≠	not equal to

$$-10.5 > -9.9 - 1.2$$

 $8 > 3t + 2$
 $x - 5y \ge -12$
 $r \ne 3$

Graph of an Inequality

Symbol	Examples	Graph
< or >	<i>x</i> < 3	-1 0 1 2 3 4 5
≤or≥	-3 ≥ <i>y</i>	
≠	<i>t</i> ≠ -2	<

Transitive Property of Inequality

If	Then
a < b and $b < c$	a < c
a > b and $b > c$	a > c

If
$$4x < 2y$$
 and $2y < 16$, then $4x < 16$.

If
$$x > y - 1$$
 and $y - 1 > 3$,
then $x > 3$.

Addition/Subtraction Property of Inequality

If	Then
a > b	a+c>b+c
$a \ge b$	$a+c \ge b+c$
a < b	a+c < b+c
$a \le b$	$a+c \leq b+c$

$$d - 1.9 \ge -8.7$$

 $d - 1.9 + 1.9 \ge -8.7 + 1.9$
 $d \ge -6.8$

Multiplication Property of Inequality

If	Case	Then
a < b	c > 0, positive	ac < <i>bc</i>
a > b	c > 0, positive	ac > bc
a < b	c < 0, negative	ac > bc
a > b	c < 0, negative	ac < bc

Example: if
$$c = -2$$

$$5 > -3$$

$$5(-2) < -3(-2)$$

$$-10 < 6$$

Division Property of Inequality

If	Case	Then
a < b	c > 0, positive	$\frac{a}{c} < \frac{b}{c}$
a > b	c > 0, positive	$\frac{a}{c} > \frac{b}{c}$
a < b	c < 0, negative	$\frac{a}{c} > \frac{b}{c}$
a > b	c < 0, negative	$\frac{a}{c} < \frac{b}{c}$

Example: if
$$c = -4$$

$$-90 \ge -4t$$

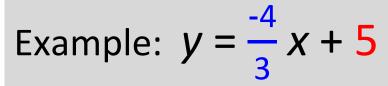
$$\frac{-90}{-4} \le \frac{-4t}{-4}$$

$$22.5 \le t$$

Linear Equation: Slope-Intercept Form

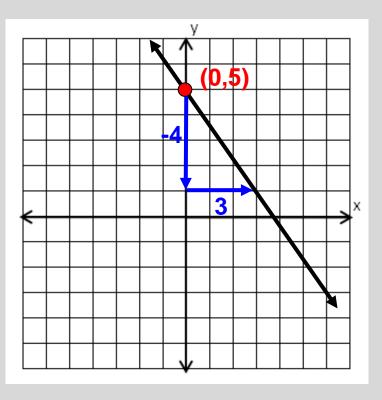
$$y = mx + b$$

(slope is m and y-intercept is b)



$$m = \frac{-4}{3}$$

$$b = 5$$



Linear Equation: Point-Slope Form

$$y-y_1=\mathbf{m}(x-x_1)$$

where m is the slope and (x_1,y_1) is the point

Example:

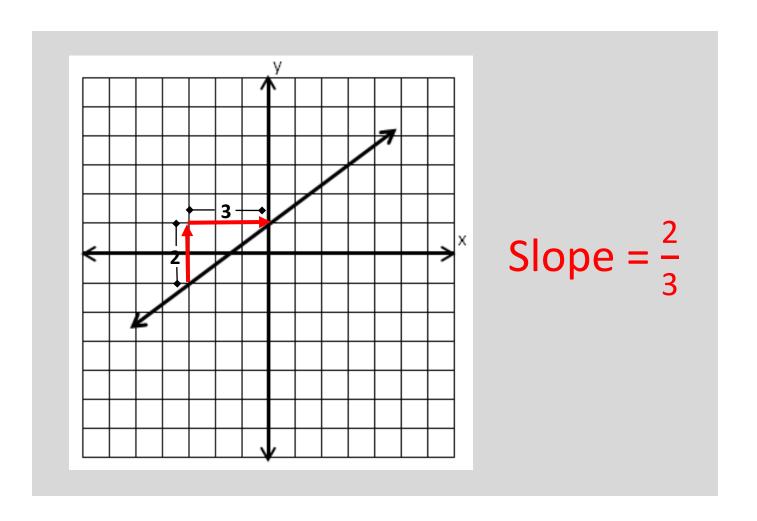
Write an equation for the line that passes through the point (-4,1) and has a slope of 2.

$$y-1 = 2(x-4)$$

 $y-1 = 2(x+4)$
 $y = 2x + 9$

Slope

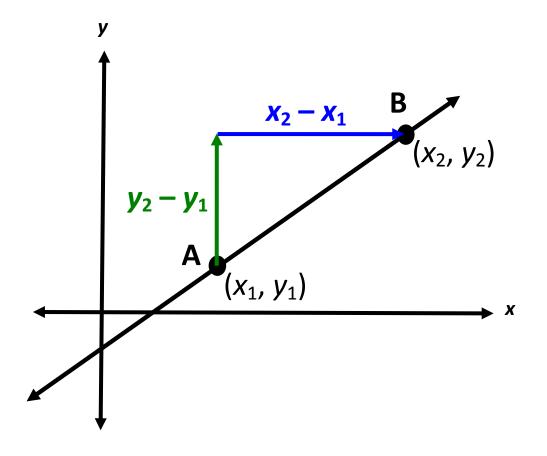
A number that represents the rate of change in y for a unit change in x



The slope indicates the steepness of a line.

Slope Formula

The ratio of vertical change to horizontal change

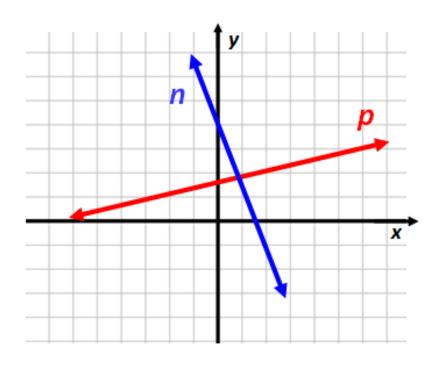


slope = m =
$$\frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Slopes of Lines

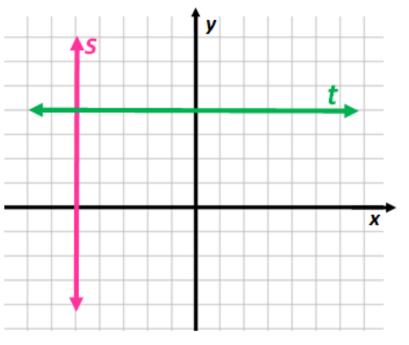
Line *p*has a positive
slope.

Line *n* has a negative slope.



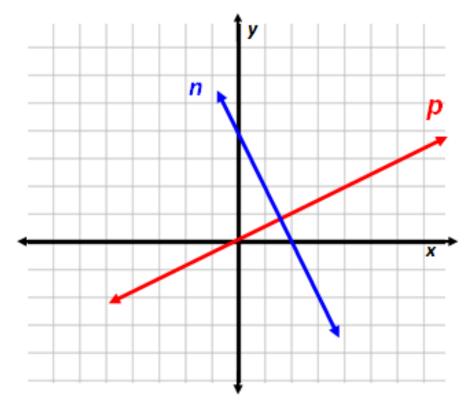
Vertical line s has an undefined slope.

Horizontal line *t* has a zero slope.



Perpendicular Lines

Lines that intersect to form a right angle



Perpendicular lines (not parallel to either of the axes) have slopes whose product is -1.

Example:

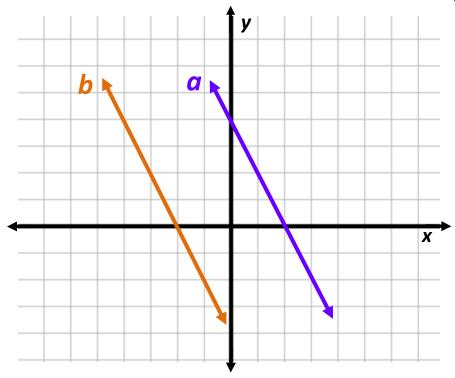
The slope of line n = -2. The slope of line $p = \frac{1}{2}$.

$$-2 \cdot \frac{1}{2} = -1$$
, therefore, *n* is perpendicular to *p*.

Parallel Lines

Lines in the same plane that do not intersect are parallel.

Parallel lines have the same slopes.



Example:

The slope of line a = -2.

The slope of line b = -2.

-2 = -2, therefore, α is parallel to b.

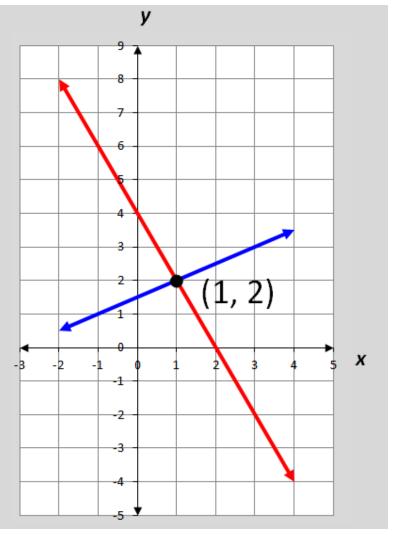
Mathematical Notation

Set Builder Notation	Read	Other Notation
{ <i>x</i> 0 < <i>x</i> ≤ 3}	The set of all x such that x is greater than or equal to 0 and x is less than 3.	$0 < x \le 3$ $(0, 3]$
{ <i>y</i> : <i>y</i> ≥ -5}	The set of all <i>y</i> such that <i>y</i> is greater than or equal to -5.	<i>y</i> ≥ -5 [-5, ∞)

Solve by graphing:

$$\begin{cases} -x + 2y = 3 \\ 2x + y = 4 \end{cases}$$

The solution, (1, 2), is the only ordered pair that satisfies both equations (the point of intersection).



Solve by substitution:

$$\begin{cases} x + 4y = 17 \\ y = x - 2 \end{cases}$$

Substitute x - 2 for y in the first equation.

$$x + 4(x - 2) = 17$$
$$x = 5$$

Now substitute 5 for x in the second equation.

$$y = 5 - 2$$
$$y = 3$$

The solution to the linear system is (5, 3), the ordered pair that satisfies both equations.

Solve by elimination:

$$\begin{cases} -5x - 6y = 8 \\ 5x + 2y = 4 \end{cases}$$

Add or subtract the equations to eliminate one variable.

$$-5x - 6y = 8$$

$$+ 5x + 2y = 4$$

$$-4y = 12$$

$$y = -3$$

Now substitute -3 for y in either original equation to find the value of x, the eliminated variable.

$$-5x - 6(-3) = 8$$

 $x = 2$

The solution to the linear system is (2,-3), the ordered pair that satisfies both equations.

Identifying the Number of Solutions

Number of Solutions	Slopes and y-intercepts	Graph
One solution	Different slopes	y x
No solution	Same slope and different y-intercepts	y x
Infinitely many solutions	Same slope and same y-intercepts	y

Graphing Linear Inequalities

Example	Graph
<i>y</i> ≤ <i>x</i> + 2	3 y 4 3 2 3 4 X
y > -x - 1	-4 -3 -2 -1 0 1 2 3 X

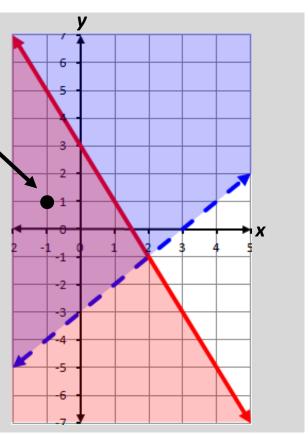
System of Linear Inequalities

Solve by graphing:

$$\begin{cases} y > x - 3 \\ y \le -2x + 3 \end{cases}$$

The solution region contains all ordered pairs that are solutions to both inequalities in the system.

(-1,1) is <u>one</u> solution to the system located in the solution region.



Dependent and Independent Variable

x, independent variable(input values or domain set)

Example:

$$y = 2x + 7$$

y, dependent variable(output values or range set)

Dependent and Independent Variable

Determine the distance a car will travel going 55 mph.

$$d = 55h$$

independent

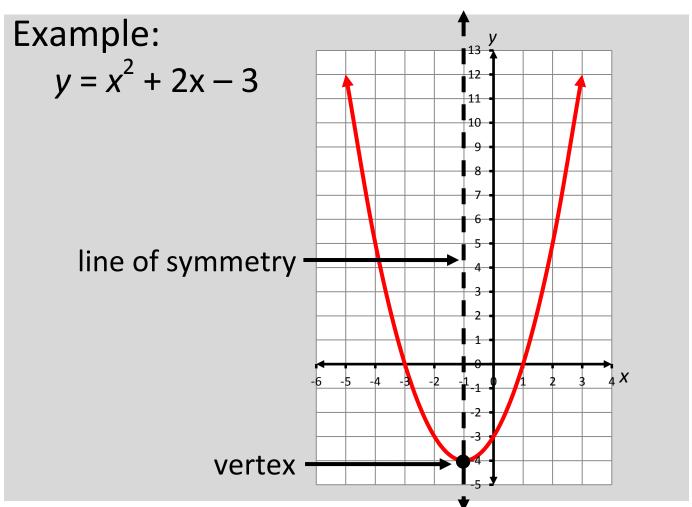
h	d
0	0
1	55
2	110
3	165

dependent

Graph of a Quadratic Equation

$$y = ax^2 + bx + c$$

$$a \neq 0$$



The graph of the quadratic equation is a curve (parabola) with one line of symmetry and one vertex.

Quadratic Formula

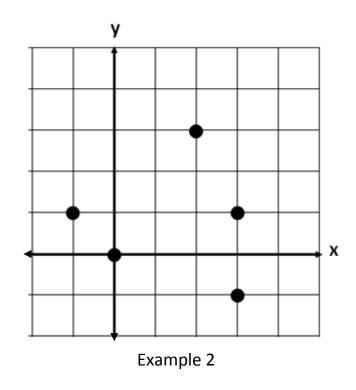
Used to find the solutions to any quadratic equation of the form, $y = ax^2 + bx + c$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Relations

Representations of relationships

X	У
-3	4
0	0
1	-6
2	2
5	-1



Example 1

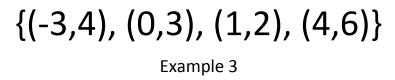
 $\{(0,4), (0,3), (0,2), (0,1)\}$

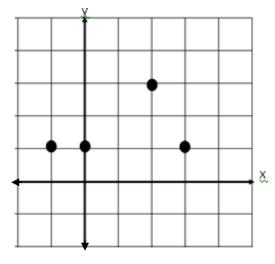
Example 3

Functions

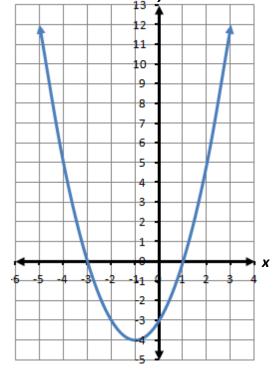
Representations of functions

X	у
3	2
2	4
0	2
-1	2





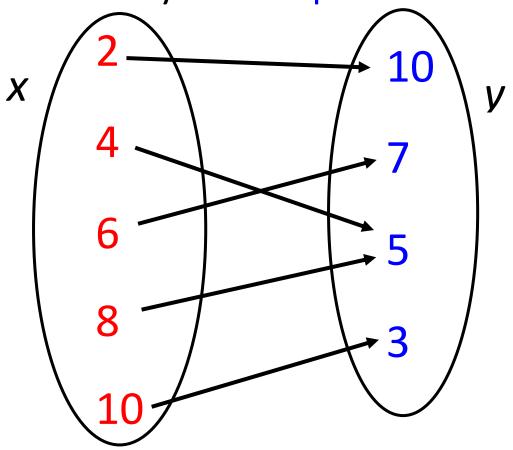
Example 2



Example 4

Function

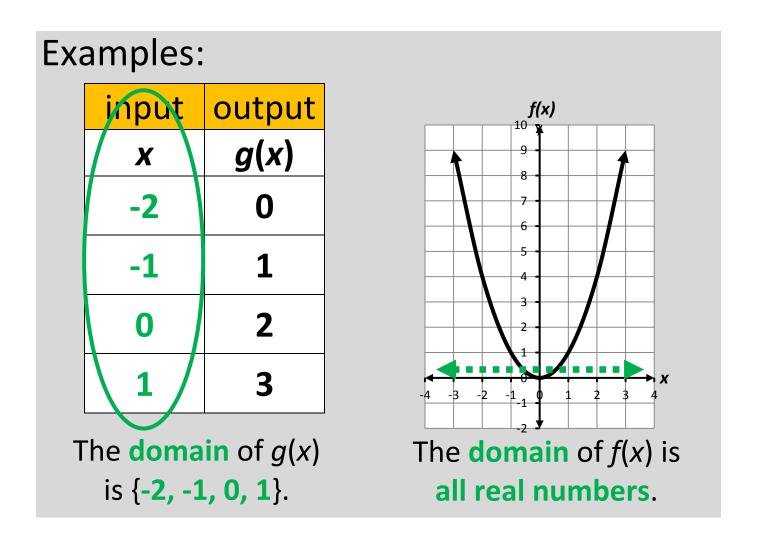
A relationship between two quantities in which every input corresponds to exactly one output



A relation is a function if and only if each element in the domain is paired with a unique element of the range.

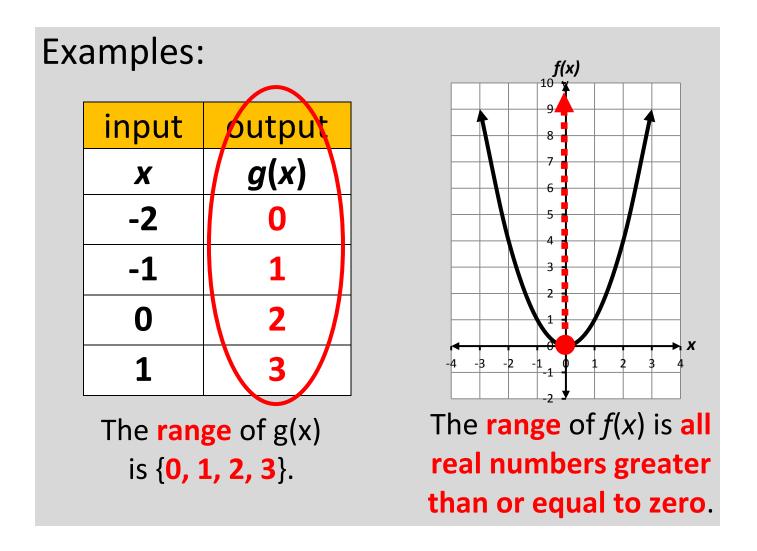
Domain

A set of input values of a relation



Range

A set of output values of a relation



Function Notation

f(x) is read "the value of f at x" or "f of x"

Example:

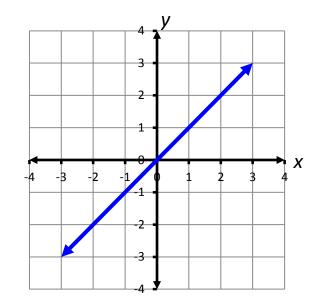
$$f(x) = -3x + 5$$
, find $f(2)$.
 $f(2) = -3(2) + 5$
 $f(2) = -6$

Letters other than f can be used to name functions, e.g., g(x) and h(x)

Parent Functions

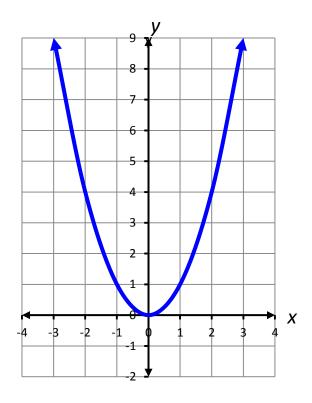
Linear

$$f(x) = x$$



Quadratic

$$f(x)=x^2$$



Transformations of Parent Functions

Parent functions can be transformed to create other members in a family of graphs.

Translations

g(x) = f(x) + k is the graph of f(x) translated vertically –

k units up when k > 0.

k units down when k < 0.

g(x) = f(x - h) is the graph of f(x) translated horizontally -

h units right when h > 0.

h units **left** when h < 0.

Transformations of Parent Functions

Parent functions can be transformed to create other members in a family of graphs.

Reflections

$$g(x) = -f(x)$$

is the graph of $f(x)$ —

reflected over the x-axis.

$$g(x) = f(-x)$$

is the graph of $f(x)$ –

reflected over the y-axis.

Transformations of Parent Functions

Parent functions can be transformed to create other members in a family of graphs.

Dilations

$$g(x) = a \cdot f(x)$$

is the graph of $f(x)$ —

$$g(x) = f(ax)$$

is the graph of $f(x)$ –

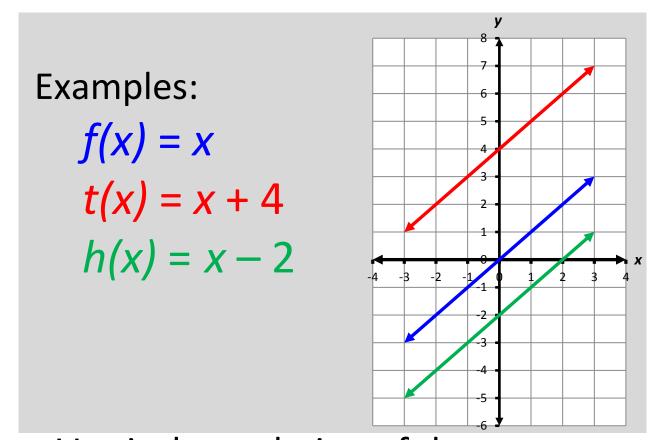
vertical dilation (stretch) if a > 1.

vertical dilation (compression) if 0 < a < 1.

horizontal dilation (compression) if a > 1.

horizontal dilation (stretch) if 0 < a < 1.

Linear functions g(x) = x + b

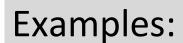


Vertical translation of the parent function, f(x) = x

Linear functions

$$g(x) = mx$$

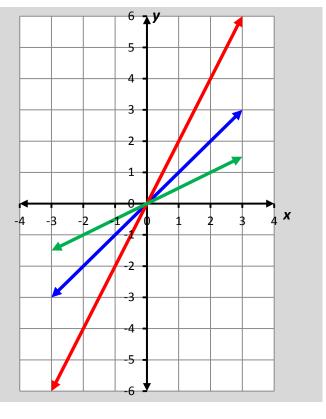
$$m>0$$



$$f(x) = x$$

$$t(x) = 2x$$

$$h(x) = \frac{1}{2}x$$



Vertical dilation (stretch or compression) of the parent function, f(x) = x

Linear functions

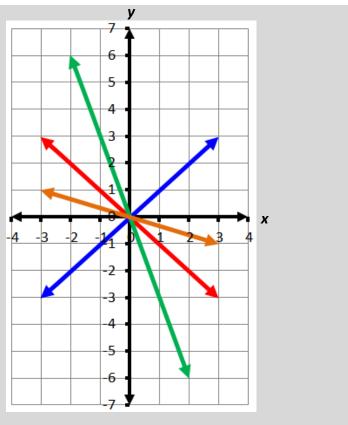
$$g(x) = mx$$
$$m < 0$$

$$f(x) = x$$

$$t(x) = -x$$

$$h(x) = -3x$$

$$d(x) = -\frac{1}{3}x$$



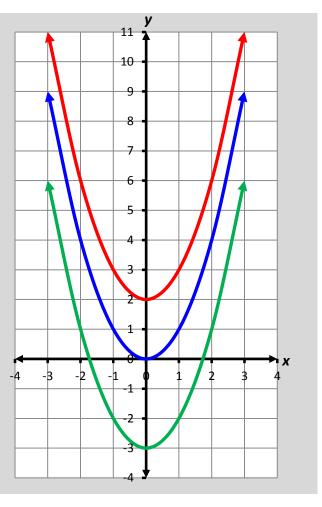
Vertical dilation (stretch or compression) with a reflection of f(x) = x

Quadratic functions

$$h(x) = x^2 + c$$

Examples:

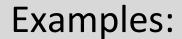
$$f(x) = x2$$
$$g(x) = x2 + 2$$
$$t(x) = x2 - 3$$



Vertical translation of $f(x) = x^2$

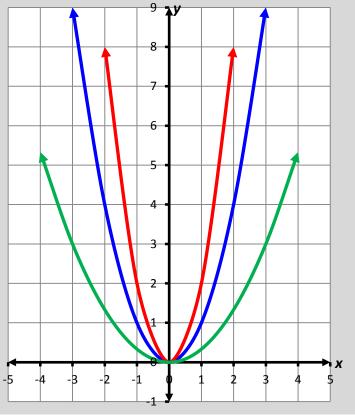
Quadratic functions

$$h(x) = ax^2$$
$$a > 0$$



$$f(x) = x^2$$
$$g(x) = 2x^2$$

$$t(x) = \frac{1}{3}x^2$$



Vertical dilation (stretch or

compression) of
$$f(x) = x^2$$

Quadratic functions

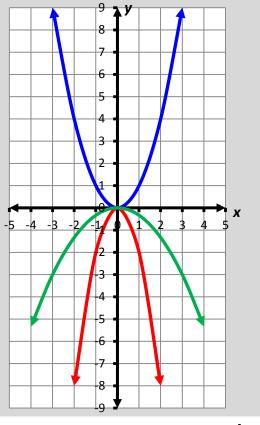
$$h(x) = ax^2$$
$$a < 0$$

Examples:

$$f(x) = x^{2}$$

$$g(x) = -2x^{2}$$

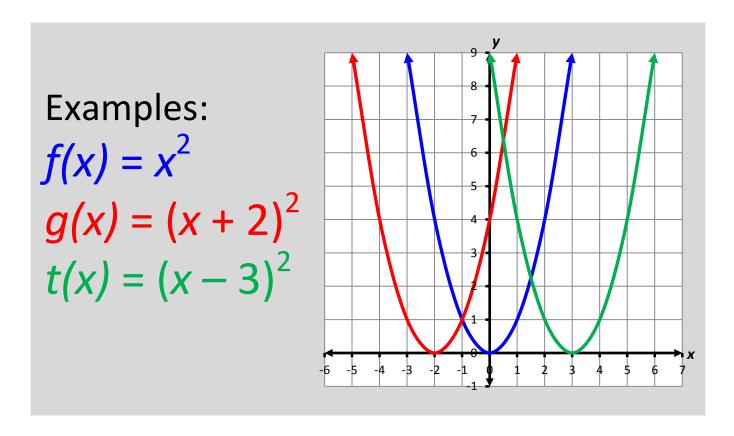
$$t(x) = -\frac{1}{2}x^{2}$$



Vertical dilation (stretch or compression) with a reflection of $f(x) = x^2$

Quadratic functions

$$h(x) = (x+c)^2$$

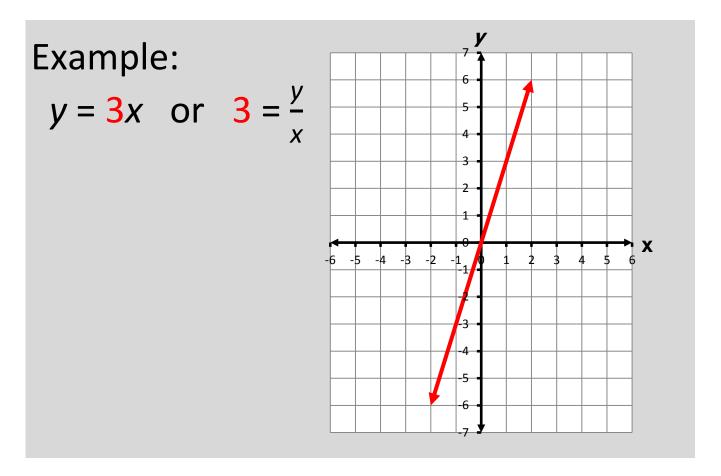


Horizontal translation of $f(x) = x^2$

Direct Variation

$$y = kx$$
 or $k = \frac{y}{x}$

constant of variation, $k \neq 0$

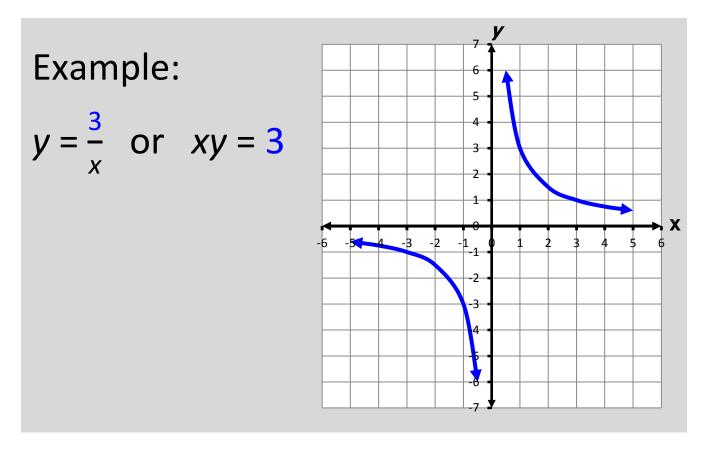


The graph of all points describing a direct variation is a line passing through the origin.

Inverse Variation

$$y = \frac{k}{x}$$
 or $k = xy$

constant of variation, $k \neq 0$



The graph of all points describing an inverse variation relationship are 2 curves that are reflections of each other.

Statistics Notation

x_i	i th element in a data set
μ	mean of the data set
σ^2	variance of the data set
σ	standard deviation of the
	data set
n	number of elements in the
	data set

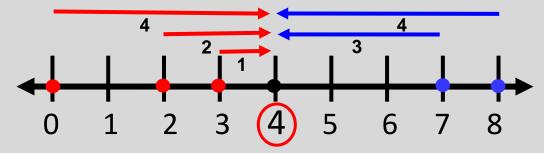
Mean

A measure of central tendency

Example: Find the mean of the given data set.

Data set: 0, 2, 3, 7, 8

Balance Point



Numerical Average

$$\mu = \frac{0+2+3+7+8}{5} = \frac{20}{5} = 4$$

Median

A measure of central tendency

Examples:

Find the median of the given data sets.

Data set: 6, 7, 8, 9, 9

The median is 8.

Data set: 5, 6, 8, 9, 11, 12

The median is 8.5.

Mode

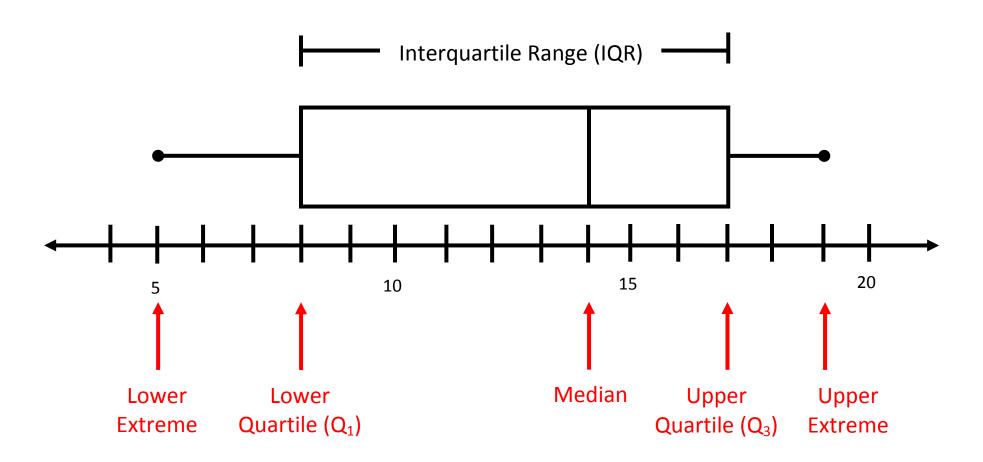
A measure of central tendency

Examples:

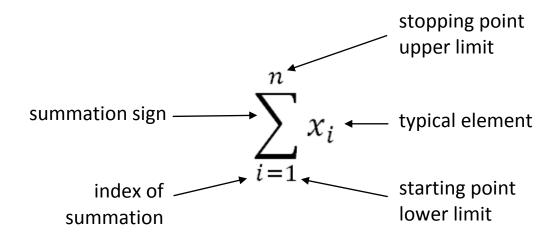
Data Sets	Mode
3, 4, 6, 6, 6, 6, 10, 11, 14	6
0, 3, 4, 5, 6, 7, 9, 10	none
5.2 , 5.2 , 5.2 , 5.6 , 5.8 , 5.9 , 6.0	5.2
1, 1, 2, 5, 6, 7, 7, 9, 11, 12	1, 7 bimodal

Box-and-Whisker Plot

A graphical representation of the five-number summary



Summation



This expression means sum the values of x_n starting at x_1 and ending at x_n .

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + x_3 + \dots + x_n$$

Example: Given the data set {3, 4, 5, 5, 10, 17}

$$\sum_{i=1}^{6} x_i = 3 + 4 + 5 + 5 + 10 + 17 = 44$$

Mean Absolute Deviation

A measure of the spread of a data set

Mean
Absolute
Deviation
$$= \frac{\sum_{i=1}^{n} |x_i - \mu|}{n}$$

The mean of the sum of the absolute value of the differences between each element and the mean of the data set

Variance

A measure of the spread of a data set

$$variance(\sigma^2) = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}$$

The mean of the squares of the differences between each element and the mean of the data set

Standard Deviation

A measure of the spread of a data set

standard deviation (
$$\sigma$$
) = $\sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$

The square root of the mean of the squares of the differences between each element and the mean of the data set or the square root of the variance

z-Score

The number of standard deviations an element is away from the mean

z-score(z) =
$$\frac{x - \mu}{\sigma}$$

where x is an element of the data set, μ is the mean of the data set, and σ is the standard deviation of the data set.

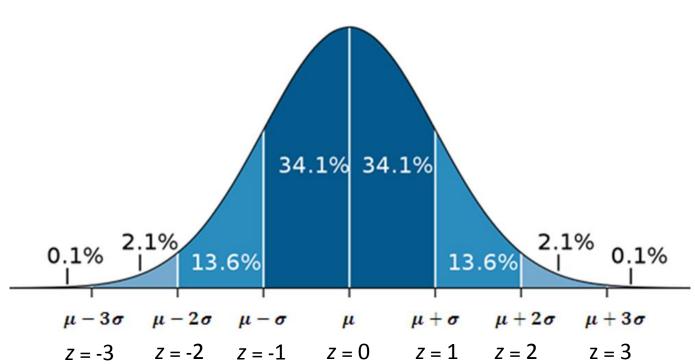
Example: Data set A has a mean of 83 and a standard deviation of 9.74. What is the z-score for the element 91 in data set A?

$$z = \frac{91-83}{9.74} = 0.821$$

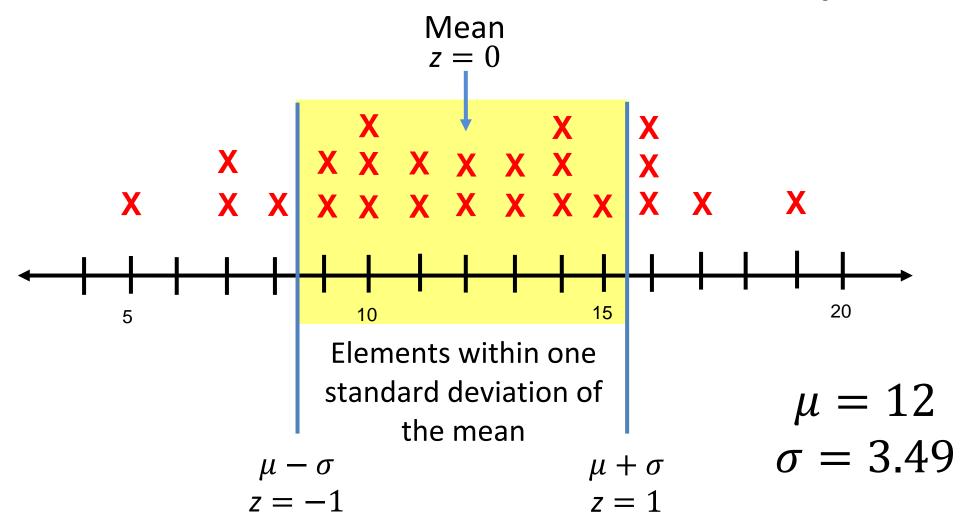
z-Score

The number of standard deviations an element is from the mean

z-score (z)
$$=\frac{x-\mu}{\sigma}$$

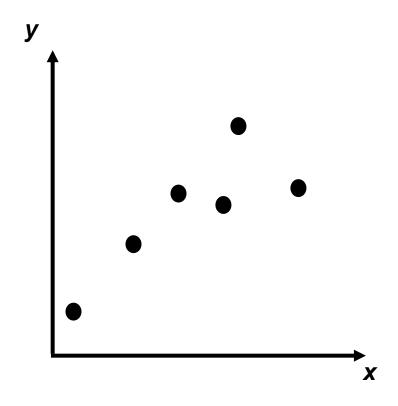


Elements within One Standard Deviation (σ)of the Mean (μ)



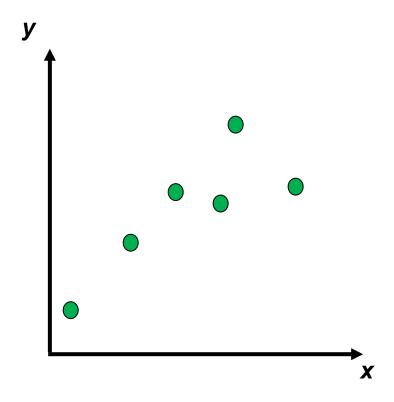
Scatterplot

Graphical representation of the relationship between two numerical sets of data



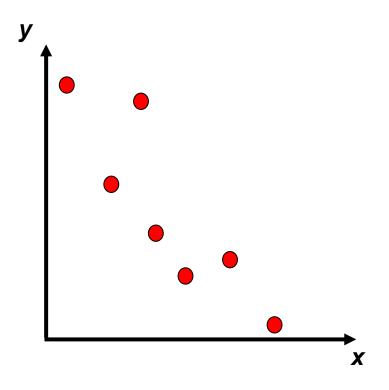
Positive Correlation

In general, a relationship where the dependent (y) values increase as independent values (x) increase



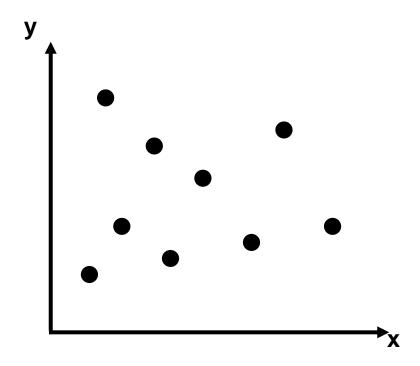
Negative Correlation

In general, a relationship where the dependent (y) values decrease as independent (x) values values increase.



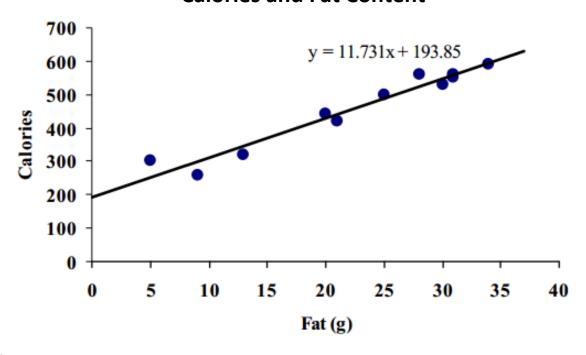
No Correlation

No relationship between the dependent (y) values and independent (x) values.

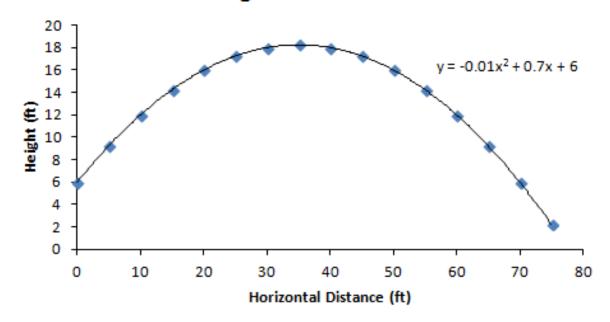


Curve of Best Fit

Calories and Fat Content



Height of a Shot Put



Outlier Data

