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THE ALGEBRA OF QUADRATICS 
 

An expression of the form 2ax bx c+ +  with x the variable and a, b, and c fixed 

values (with 0a ≠ ) is called a quadratic. To solve a quadratic equation means to 

solve an equation that can be written in the form 2 0ax bx c+ + = . 

 

 

WHY THE NAME QUADRATIC?  

 

The prefix quad- means “four” and quadratic expressions are ones that involve 

powers of x up to the second power (not the fourth power). So why are quadratic 

equations associated with the number four? 

 

Answer: These equations are intimately connected with problems about squares and 

quadrangles. (In fact, the word quadratic is derived from the Latin word quadratus 
for square.) Questions about quadrangles often lead to quadratic equations. For 

example, consider the problem: 

 

A quadrangle has one side four units longer than the other. Its area is 60 square 
units. What are the dimensions of the quadrangle? 
 
If we denote the length of one side of the quadrangle as x units, then the other 

must be 4x +  units in length. We must solve the equation: ( 4) 60x x + = , which is 

equivalent to solving the quadratic equation 2 4 60 0x x+ − = . 

 

Solving quadratic equations, even if not derived from a quadrangle problem, still 

involves the geometry of four-sided shapes. As we shall see, all such equations can 

be solved by a process of “completing the square.”  

 

 

Some quadratic equations are straightforward to solve, as the following series of 

examples shows:  

 
 

 

EXAMPLE 1: Solve 2 100x =   
  
Answer:  Easy.   10x =   or 10x = − .         □ 
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EXAMPLE 2: Solve 2( 3) 100x + =   

  
Answer:  A tad more complicated but still easy. 

We have:   

3 10x + =   or  3 10x + = −  

 

yielding: 7x =   or 13x = −                □ 

 

 

EXAMPLE 3: Solve 2( 4) 25y − =   

  

Answer:  We have:   

4 5y − =   or  4 5y − = −  

yielding: 

  9y =   or 1y = −                 □ 

 

EXAMPLE 4: Solve ( )24 2 16 0p + − =   

  

Answer:  Add 16: 

   24( 2) 16p + =  

Divide by 4:  

   2( 2) 4p + =  

so   

2 2p + =   or  2 2p + = −  

yielding: 

  0p =   or 4p = −                □ 

 

EXAMPLE 5: Solve ( )27 9 0x + + =   

  

Answer:  We have: 

   2( 7) 9x + = −  

In the system of real numbers, it is impossible for a quantity squared to be 

negative.  This equation has no solution 

 

[Comment:  If complex numbers are part of your studies (See ADVANCED 
COUNTING AND ADVANCED NUMBER SYSTEMS) we can continue and deduce 

that: 

7 3x i+ =   or  7 3x i+ = −  

 

yielding the solutions  7 3x i= − +  or 7 3x i= − − .]              □ 
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EXAMPLE 6: Solve ( )21 5x − =   

  

Answer:   

We have: 

1 5x − =   or  1 5x − = −  

so: 

  1 5x = +   or 1 5x = −            □ 

 

 

 

EXAMPLE 7: Solve 2( 3) 49x + =   

  

Answer:   

We have:   

3 7x + =   or  3 7x + = −  

yielding: 

  4x =   or 10x = −            □ 

 

 

EXAMPLE 8: Solve 2 6 9 49x x+ + =   

  

Answer:  If one is extremely clever one might realize that this is a repeat of 

example 7: The quantity 2 6 9x x+ +  happens to equals 2( 3)x + . Thus this equation 

has the same solutions as before: 4x =  and 10x = − .   How might one be clever to 

see that this is indeed a familiar example in disguise?    □ 

 

 

 

 

Example 8 reveals a general strategy for solving all quadratic equations:  

 

If we can rewrite an equation in the form  
 

( )2x A B+ =  

 

then we have the solutions x A B= − +  or x A B= − − .  
 

 

We’ll explore how to rewrite equations next. 
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COMPLETING THE SQUARE 
 

An area model for multiplication provides a convenient interplay between arithmetic 

and geometry. For example, the quantity ( )23x +  can be interpreted as the area of 

a square with two sides each of length 3x +  inches. If we divide this square into 

four pieces, we see that ( )2 23 6 9x x x+ = + + . 

 
 

Notice that one piece of the square has area 2x , two pieces have equal area 3x  and 

the fourth piece has area a specific numerical value.  

 

 

EXAMPLE: Given: 
2 10 ??x x+ +  

 

what number should one choose for “??” so that the picture associated with the 

expression is a perfect square?  

 

Answer: Geometrically, the issue appears as follows:  
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Each of the two identical pieces must have area 5x , and so the number in each of 

the places of the single question mark must be 5. This forces us to choose the 

number 25 in the place of the double question marks: 

 

 
 

In choosing 25, we obtain ( )22 10 25 5x x x+ + = + , a perfect square           □ 

 

 

COMMENT: The process we followed is called completing the square. The quantity 
2 10x x+  becomes a complete square (literally!) once we add the value 25 to it. 

 

 

EXERCISE: What number should one choose to make  

 

                     2 8 ??x x+ +  
 

a perfect square? 

 

 

Let’s allow for negative lengths and negative areas in a geometric model. (Although 

this has little meaning in terms of the geometry, the algebra implied by the 

admission of negative entities is still valid. See ARITHMETIC: GATEWAY TO ALL 
for a discussion of negative numbers and the geometric beliefs we still like to 

assign to them. )  

 

 

EXAMPLE: What number should one choose to make  

 

                     2 8 ??x x− +  

 

a perfect square? 
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Answer:  

 
Select“-4” and “-4” making the bottom right square of area 16.  

 
Thus choose “16” for the missing number.  

 

   ( )22 8 16 4x x x− + = −   □ 

 

 

 

 

EXERCISE: Select a value for the missing term to make each of these a perfect 

square. Give the dimensions of the square. 

 

a) 2 20 ??x x+ +  

b) 2 6 ??x x− +  

c) 2 300 ??x x+ +  

d) 2 3 ??x x+ +  
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COMMENT: There is a general technique not worth memorizing. (If one ever needs 

this and can’t recall the technique – just draw the box!) 

 

To make 2 ??x bx+ +  into a perfect square, always choose 
2

2

b 
 
 

 for the missing 

term.  

 

Reason:  

 

Select“
2

b
” and “

2

b
” making the bottom right square of area 

2

2

b 
 
 

.  

 

 
 

Thus choose “half of b all squared” for the missing number.  

 

  
2 2

2

2 2

b b
x bx x

   + + = +   
   

  □ 
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EXAMPLE: Make 2 7 ??x x− +  into a perfect square.  

 

Answer: Work with 
2

7

2

 − 
 

. We have 
2

2 49 7
7

4 2
x x x

 − + = − 
 

    

 

CHECK:   2 27 7 7 7 49 49
7

2 2 2 2 4 4
x x x x x x x
  − − = − − + = − +  
  

    Yes!  □ 

 

EXAMPLE: Make 2 5 ??x x+ +  into a perfect square.  

 

Answer: Work with 

2

5

2

 
  
 

. We have 

2

2 5 5
5

4 2
x x x

 
+ + = +  

 
    

 

CHECK:   2 25 5 5 5 5 5
5

2 2 2 2 4 4
x x x x x x x
  
+ + = + + + = + +    

  
    Yes!  □ 

 

EXAMPLE: Make 2 1
??

2
x x+ +  into a perfect square.  

 

Answer: Work with 
2

1

4

 
 
 

. We have 
2

2 1 1 1

2 16 4
x x x

 + + = + 
 

    

 

CHECK:   2 21 1 1 1 1 1 1

4 4 4 4 16 2 16
x x x x x x x
  + + = + + + = + +  
  

    Yes!  □ 

 

EXERCISE: Make each of the following into a perfect square. Check that your 

answers are correct. 

 

a) 2 5 ??x x+ +  

 

b) 2 ??x x− +  

 

c) 2 1
??

3
x x+ +  

 

d) 2 1.2 ??x x− +  

 

e) 2 ??x xπ+ +    
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SOLVING QUADRATIC EQUATIONS: Continued 
 

Let’s continue our list of examples from page 6, using the technique of completing 

the square to help us out. Although many texts have students attempt factoring 

quadratics in order to solve them, this is a very artificial and contrived approach. 

(For example, who would think to guess the factors 1 5−  and 1 5+  when solving 
2 2 4 0x x− − = ?) The method of completing the square, however, is a natural 

approach to quadratics (hence the name!) and absolutely guaranteed to work in all 

circumstances. The idea is to simply adjust the quadratic equation at hand so that a 

perfect square appears. A series of examples explains.  

 

 

 

 

EXAMPLE 9: Solve 2 4 21x x+ =   

  

Answer:  Which number makes 2 4 ??x x+ +  a perfect square? Four. (It never hurts 

to draw the box if it helps!) 

 
To solve 

   2 4 21x x+ =  

 

add four to both sides: 

 

   2 4 4 25x x+ + =  

This is:   

   2( 2) 25x + =  

yielding  

   2 5x + =  or 2 5x + = −  

 

That is,   3x =   or 7x = −    □ 
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EXAMPLE 10: Solve 2 6 55x x− =   

  

Answer:  To obtain a perfect square add 9 to both sides. 

 

 
 

   

2

2

6 9 64

( 3) 64

3 8 or        3 8

11 or        5

x x

x

x x

x x

− + =

− =

− = − = −

= = −

 

   □ 

 

EXAMPLE 11: Solve 2 8 10 30x x+ + =   

  

Answer:  The “10” in the left side is the wrong number for a perfect square. Life 

would be easier if it were 16 instead. Let’s make it 16! 

 

Add 6 to both sides: 

 

   

2

2

8 16 36

( 4) 36

4 6 or        4 6

2 or        10

x x

x

x x

x x

+ + =

+ =

+ = + = −

= = −

 

   □ 
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EXAMPLE 12: Solve 2 10 3 0x x− + =   

  

Answer:  The “3” in the left side is the wrong number for a perfect square. Let’s 

make it 25.  

Add 22 to both sides: 

 

   

2

2

10 25 22

( 5) 22

5 22 or        5 22

5 22 or        5 22

x x

x

x x

x x

− + =

− =

− = − = −

= + = −

 

   □ 

 

 

EXAMPLE 13: Solve 2 90 22 31w w+ = −   

  

Answer: Let’s bring all the terms containing a variable to the left side. 

 

   2 22 90 31w w− + = −  

 

And adjust the number “90” by adding 31 throughout to complete the square. 

 

   2 22 121 0w w− + =  
Thus we have: 

   ( )211 0w − =  

giving  

   11 0w − =  

That is:  

   11w = .    □ 

 

COMMENT: Zero is the only number with a single square root. As this example 

shows, it is possible for a quadratic equation to have just one solution. (One 

normally expects two.)  
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COMMENT: LEADING COEFFICIENTS DIFFERENT FROM ONE 

 

Consider a quadratic equation with the coefficient of the 2x -term different from 

1, say: 

    23 4 1 0x x− + =  

 

One can solve this by dividing through by 3 and completing the square for the 

equation 2 4 1
0

3 3
x x− + = .  This will certainly work using the box method, which 

begins by noting that 2x  is x  times x .  

 

 

Alternatively … We could modify 23x  to make it too a perfect square. Begin by 

multiplying the equation through by 3:  

 
29 12 3 0x x− + =  

 

and apply the box method to this equation. Note that one cell of the box has area 
29x  and so side-length 3x : 

 
 

We need two cells of the same area “adding” to 12x− : 

 
and this shows that the constant term we need to complete the square is 4 . 
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( )

2

2

2

9 12 3 0

9 12 4 1

3 2 1

3 2 1 1

3 3 1

1
1

3

x x

x x

x

x or

x or

x or

− + =

− + =

− =

− = −

=

=

 

 

Done! 

 

 

EXERCISE: Solve the following quadratics via this method:  

 

a) 24 12 5 0x x− + =  

c) 22 4 1 0x x+ − =  

d) 25 2 3 0x x− − =  

a) 22 3 2 0x x− − =  
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A TRICK TO AVOID FRACTIONS 

 

Solving 2 3 2 20x x− + =  requires working with fractions 
3

2
−  and 

9

4
. (Try it to see 

why.) The problem is the odd number in the middle of the quadratic.  

 

Here’s a trick:  

 

        Make that middle number even by multiplying through by FOUR. 

 

This gives:  
24 12 8 80x x− + =  

 

Why four? Doing so gives the term 24x  which is ( )22x . This allows us to complete 

the square:  

 
Thus: 

( )

2

2

2

4 12 8 80

4 12 9 81

2 3 81

2 3 9 9

2 12 6

6 3

x x

x x

x

x or

x or

x or

− + =

− + =

− =

− = −

= −

= −

 

 

Exercise: Solve the following quadratics using this trick: 

a) 2 7 2 0x x− + =  

b) 22 6 1y y= +   
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THE ULTIMATE BOX METHOD 
 

Let’s now combine the two tricks we’ve just discussed to create the “ultimate” box 

method for all quadratics. Suppose we wish to solve an equation of the form: 

 
2 0ax bx c+ + =  

 

where the number in front of 2x  is not one, and the number in front of x  might be 

odd: 

 

i) Multiply through by a  and solve instead 2 2 0a x abx ac+ + =  

ii) Also multiply through by 4 if the middle coefficient is odd and solve 
2 24 4 4 0a x abx ac+ + =    

iii) Now use the box method on this equation 

 

 

EXAMPLE: Solve 23 7 4 0x x+ + = . 

 

Answer: Let’s multiply through by 3: 

 

  29 21 12 0x x+ + =  
 

To deal with the odd middle term let’s also multiply through by 4:  

 

  236 84 48 0x x+ + =  

 

Now we are set to go: 

                 

( )

2

2

36 84 49 1

6 7 1

6 7 1 1

6 6 8

8
1

7

x x

x

x or

x or

x or

+ + =

+ =

+ = −

= − −

= − −

 

 

          □ 
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EXAMPLE: Solve 22 3 7 1x x− + + =  

 

Answer: Let’s multiply through by 2−  and also through by 4: 

 

   216 24 56 8x x− − = −   

 

Now the box method:  

 
 

( )

2

2

16 24 9 8 9 56

4 3 57

4 3 57

3 57

4

x x

x

x

x

− + = − + +

− =

− = ±

±
=

 

 

Done!          □ 

 

 

EXERCISE: Solve the following quadratic via the ultimate box method: 

 

a) 25 18 0x x− − =  

b) 23 4 0x x+ − =  

c) 22 3 5x x− =  

d) 210 10 1x x− =  

 

COMMENT: Of course fractions and other types of numbers are unavoidable in 

solving quadratics with non-integer coefficients.  

 

CHALLENGE: Solve 2 1 1
3 0

102
x x− + =  

 

Comment: The box method can be made to work!  
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****** OPTIONAL READING ****** 
 

ASIDE ON COMPLEX SOLUTIONS: 

If one wishes to stay within the realm of real numbers, then it can be that a 

quadratic equation has no solutions. Within the realm of the complex numbers, 

however, square roots of negative quantities are permitted and all quadratic 

equations have solutions. (Usually two, sometimes just one.)  
 

EXAMPLE 14: Solve 29 4z z+ =   
  
Answer: Let’s bring all terms containing the variable to one side. 
 

   2 4 9 0z z− + =  
 

Subtract five from both sides to obtain a perfect square: 
 

   2 4 4 5z z− + = −  

   ( )22 5z − = −  

 

This has no solution in the realm of real numbers: no quantity squared is negative.  

In the realm of complex numbers, however, we can say: 
 

   2 5z i− =  or 5i−  

yielding: 

   2 5z i= +  or 2 5i−   □ 
 

EXAMPLE 15: Solve 22 2 1 0x x+ + =   

  

Answer: Multiply through by 2:  
24 4 2 0x x+ + =  

Use the box method to see that the magic number we seek is “1”: 

 

( )

2

2

4 4 1 1

2 1 1

x x

x

+ + = −

+ = −
 

    

This has no solution within the reals. Within the system of complex numbers we can 

continue on:  
   2 1x i or i+ = −   

    

yielding 
1

2

i
x

− +
=  or 

1

2

i− −
.   □ 
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THE GENERAL QUADRATIC FORMULA 
 

Let’s look at the general procedure we have developed for solving a quadratic 

equation of the form employing the two tricks that led to the “ultimate box 

method: 

   2 0ax bx c+ + =  

 

Since the leading term is 2ax , potentially not a square number, let’s multiply 

through by a : 

 

   2 2 0a x abx ac+ + =  
 

The middle term abx  might involve an odd coefficient. To avoid fractions, let’s also 

multiply through by four:  

 

   2 24 4 4 0a x abx ac+ + =  

 

Now apply the box method: 
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This shows that we need the “magic number” 2b  to complete the square. Let’s 

subtract 4ac : 

 
2 24 4 4a x abx ac+ = −  

and add 2b : 
2 2 2 24 4 4a x abx b b ac+ + = −  

    

Now we are set to go. (This looks worse than it actually is!) 

 

( )

2 2 2 2

2 2

2 2

4 4 4

2 4

2 4 4

a x abx b b ac

ax b b ac

ax b b ac or b ac

+ + = −

+ = −

+ = − − −

 

 

Now add b−  throughout:  

 
2 22 4 4ax b b ac or b b ac= − + − − − −  

 

And divide through by 2a : 

 

   
2 24 4

or
2 2

b b ac b b ac
x x

a a

− + − − − −
= =  

 

This statement can be combined into a single expression:  

 

   
2 4

2

b b ac
x

a

− ± −
=  

 

 

                                                       

IF   2 0ax bx c+ + =     THEN   
2 4

2

b b ac
x

a

− ± −
=  
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SOME LANGUAGE: THE DISCRIMINANT 

A general quadratic 2 0ax bx c+ + =  has general solution: 

 
2 4

2

b b ac
x

a

− ± −
=  

 

Memorising this formula offers the speediest way to solve quadratics. (But if speed 

isn’t your primary concern, then the box method we’ve described, that is, 

completing the square, will never let you down and will keep you close in touch with 

your understanding of why solving quadratics works the way it does!) 

 

The quantity under the square root sign, 2 4b ac− , is called the discriminant of the 

quadratic. Folk like to give this quantity a name because its sign determines the 

types of solutions one obtains:  

 

• If 2 4b ac−  is negative, then the quadratic has no real solutions. (One cannot 

compute the square root of a negative value.)  

 

• If 2 4b ac−  eauals 0, then the quadratic has precisely one solution. (Zero is 

the only number with precisely one square root.) 

 

• If 2 4b ac−  is positive, then the quadratic has two real solutions. (There are 

two square roots to a positive quantity.)  

 

For example, without any effort we can see: 

 
22 3 4 0w w− + =  has no solutions because 2 34 3 4 2 4 23b ac− = − ⋅ ⋅ = −  is  

negative.  

 
2 4 4 0x x− + =  has precisely one solution because 2 4 16 16 0b ac− = − = . 

 
23 1y y− −  has precisely two solutions because 2 4 1 12 13b ac− = + =  is 

positive.  
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People also note that the two solutions to a quadratic 2 0ax bx c+ + =  can be 

written:  

 
2 4

2 2

b b ac
x

a a

−
= − +  and 

2 4

2 2

b b ac
x

a a

−
= − −  

 
This shows that the two solutions lie at symmetrical positions about the value:  

 

2

b
x

a
= −  

 

Some folk consider this important to hold in mind.  

 

 

COMMENT: If you know the shape of a quadratic graph (see part II), then 

solutions to the quadratic equation 2 0ax bx c+ + =  correspond to where 
2y ax bx c= + +  crosses the x-axis and, because the graph is symmetrical,  we have 

that 
2

b
x

a
= −  is the location of the vertex of the graph. [But there are better 

ways to see this than from analyising the quadratic formula! See part II.] 

 

 

 

 

 

 

 

 

SHOULD ONE MEMORISE THE QUADRATIC FORMULA? 

 

If speed matters to you … maybe. If understanding has a higher priority in your 

mind, then the box method will not let you down … especially if you employ BOTH 

the tricks we used to derive the formula in the first place: 

 

To solve 2 0ax bx c+ + =  multiply through by a to make 2ax  a square and also 

multiply through by 4 to avoid fractions. 
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EXERCISE: 

a) A rectangle is twice as long as it is wide. Its area is 30 square inches. What 

are the length and width of the rectangle? 

b) A rectangle is four inches longer than it is wide. Its area is 30 square inches. 

What are the length and width of the rectangle? 

c) A rectangle is five inches longer than its width. Its area is 40 square inches. 

What are the dimensions of the rectangle? 

 

 

EXERCISE: Solve the following quadratic equations: 

 

a) 2 2 3 27v v− + =  

b) 2 4 7z z+ =  

c) 2 6 5 0w w− + =  

d) 2 7
1
4

α α− + =  

 

Also note that ( )2x x= . Solve the following disguised quadratics. 

 

e) 6 8 0x x− + =  

f) 2 1x x− = −  

g) 2 5 10x x+ − =  

 

WATCH OUT! Explain why only one answer is valid for g). 

 

h) 3 2 7β β− =  

i) 4 22 8 5 0u u+ − =  

 

 

EXERCISE:  

a) Show that an expression of the form ( )2a x h k− +  is quadratic. 

b) If ( )2y a x h k= − +  and a is positive, explain why the minimal value of y 

occurs when x h= . [Thus y takes all values k and higher.] How does this 

analysis change if a is negative? 
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THE CUBIC FORMULA 
 

There is a reason why the “cubic formula” is not taught in schools. It’s somewhat 

tricky. Let’s develop the formula here through a series of exercises. 

 

Consider an equation of the form: 3 2 0x Ax Bx C+ + + = . 

 

a) Put 
3

A
x z= −  into this equation to show that it becomes an equation of the 

form: 3z Dz E= +  for some new constants D and E.  
 

Thus, when solving cubic equations, we can just as well assume that no 2x  term 

appears. This trick was known by mathematicians of the 16th century. Then, Italian 

mathematician Girolamo Cardano (1501-1576) came up with the following truly 

inspired series of steps for going further.  

 

Instead of calling the constants D and E, he suggested calling them 3p  and 2q .  

This means we need to solve the equation:  

 
3 3 2z pz q= +  

 

b) Show that if s  and t  are two numbers that satisfy st p=  and 3 3 2s t q+ = , 

then z s t= +  will be a solution to the cubic. 
 

So our job now is to find two numbers s and t satisfying st p=  and 3 3 2s t q+ = . 

 

c) Eliminate t between these two equations to obtain a quadratic formula in 3s . 
  

d) Without doing any extra work, write down the quadratic equation we would 

have for 3t  if, instead, we eliminated s between the two equations. 
 

e) Show that a solution to the cubic equation 3 3 2z pz q= +  is: 

 

2 3 2 33 3z q q p q q p= + − + − −  

 

[Be careful about the choices of signs here. Recall we must have 3 3 2s t q+ = .] 

 

THAT’S IT. That’s the cubic formula (once you untangle the meaning of p and q). 
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For practice: 

  

f) Solve 3 3 2z z= + . 

 

g) Solve 3 6 6z z= + . 

 

h) Solve 3 23 3 11 0x x x+ − − = . 

 

i) Solve 3 6 4x x= −  
 

 

COMMENT: This final example is interesting. Graphically, the curve 3y x=  is the 

standard cubic curve and 6 4y x= −  is a straight-line graph. It is clear from the 

graphs that these two curves must intersect and produce a real solution. Is your 

answer to h) a real number? Is it a real number in disguise?  

(HINT: Evaluate ( )31 i+  and ( )31 i− .) 

 

This very issue led Italian mathematician Rafael Bombelli (1526-1572/3) to accept 

complex numbers (see volume 2) as “valid” and useful entities for obtaining real 

solutions to problems.  
 

 

 

 

 

INTERNET EXERCISE: Is there a formula for solving quartic equations? 
 

 

 

 

INTERNET RESEARCH: Is there a formula for solving quintic equations and 

beyond? 

 

[There is a rich story in the history of mathematics here.] 
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PART II: 

GRAPHING QUADRATICS 
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GRAPH OF THE SQUARING FUNCTION 
 

Consider the squaring function 2y x=  which takes an input x and squares it to 

produce the output 2x . For example, if:  
 

If 1x = , then 21 1y = = . 

If 5x = , then 25 25y = = . 

If 5x = − , then ( )25 25y = − = . 

If 20x = , then 220 400y = =  

If 0x = , then 20 0y = = . 
 

and so on. If we draw a table and plot points, we see that the graph of 2y x=  is an 

upward facing U-shaped curve. 
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Now here is a challenge question. 

 

I am six units tall and am standing at the position 4x =  on the horizontal 
axis. Is it possible to write down a formula for a function whose graph is the 

same U-shaped curve as for 2y x=  but positioned to balance on my head? 

 

 
 

 

Perhaps try this before reading on.  Play with some possible formulae. Plug in some 

sample points and table values. Test whether your ideas offer any hints as to a 

solution to this challenge.  
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FROM 2y x=  to ( )2y x k= −  

 

Here is the graph of 2y x=  again: 

 
It has a table of values:  

 
 

One thing to notice is that this graph has a “dip” at 0x = . 
 

Now consider the function ( )23y x= − . 

 

Notice that when we put 3x =  into this formula we obtain the value 20 . That is, the 

number 3 is “behaving” just like 0x =  was for the original function. 
 

In ( )23y x= −  we have that 3 is the “new zero” for the x-values. 

 

So whatever the original function was doing at 0x = , it is now doing it at 3x = .  

The original function 2y x=  “dips” at 0x =  so the graph of the function 

( )23y x= −   dips at 3x = .  

 
The entire graph has been shifted horizontally – and one can check this by drawing 

a table of values.  

 
 

 



 

© James Tanton 2009 

33

EXAMPLE: Sketch a graph of ( )23y x= + . 

 

Answer: What value of x behaves like zero for ( )23y x= + ? Answer: 3x = −  does! 

So ( )23y x= +  looks like 2y x=  but with 3x = −  the new zero.  

 
 

 

EXERCISE: 

a) Sketch a graph of ( )24y x= −  

b) Sketch a graph of 
2

1

2
y x

 = + 
 
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FROM 2y x=  to 2y x b= +  

 

Here’s the function 2y x=  again: 

 
 

 
 

How would the graph of 2 3y x= +  appear? 
 

Notice that this new function is adds three units to each output:  
 

 
 

This has the effect of raising the entire graphs three units in the vertical 

direction: 

 
The graph of the function 2 5y x= −  would be the same graph shifted downwards 5 

units, and the graph of 2 3y x= +  would the graph shifted upwards 3  units.  
 

EXERCISE:    a) Sketch 2 5y x= −            b) Sketch 2 1

2
y x= +  
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FROM 2y x=  TO ( )2y x k= −  TO ( )2y x k b= − +  

 

Here’s the graph of 2y x= : 

 
and here is the graph of ( )22y x= − . Here “2” is acting as the new zero for the x-

values, so the dip that was occurring at zero is now occurring at 2: 

  

Now, consider ( )22 3y x= − + . This is the previous graph shifted upwards three 

units: 

 
 

Question: Here we went from 2y x=  to ( )22y x= − to ( )22 3y x= − +  drawing the 

three graphs above along the way.  Is it possible to think, instead, of the sequence 

“from 2y x=  to 2 3y x= +  to ( )22 3y x= − + ”?    
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EXERCISE:   

a) Sketch ( )24 1y x= − −   

b) Sketch ( )24 2y x= + +   

c) Sketch ( )21 2y x= + −  

 

 

 

EXERCISE: I am six units tall and am standing at the position 4x =  on the 

horizontal axis. Write down the formula of a U-shaped graph that sits balanced on 

my head.  
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FROM 2y x=  TO 2y ax=  

 

Here is the graph 2y x=  again:  

 

 
 

What can we say about the graph of 22y x= ? Certainly all the outputs are doubled: 

 
This creates a “steeper” U-shaped graph:  
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EXERCISE:  

a) Draw a table of values for 23y x=  and sketch its graph. 

b) Which graph is “steeper,” that for 2100y x=  or that for 2200y x= ? 

 

 

Consider 2y x= − . It’s outputs are the negative of the outputs for 2y x= : 

 

 
 

 
 

 

EXERCISE: Describe the graph of 22y x= − . 

 

 

EXERCISE:  

a) Quentin says that the graph of 21

10
y x=  will be a very “broad” upward facing U-

shaped graph. Is he right? Explain. 

 

b) Describe the graph of 21

1000000
y x= − . 
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PUTTING IT ALL TOGETHER 

 

EXAMPLE: Analyse and quickly sketch ( )22 3 1y x= − + . 

 

Answer: Now ( )22 3 1y x= − +  is essentially the graph 22 1y x= +  with 3x =  made 

the new zero.  

 

And 22 1y x= +  is essentially 22y x=  with all outputs shifted upwards one unit.  

 

And 22y x=  is a steep upward facing U-shaped graph. 

 

Putting it all together gives:  

 
 

EXAMPLE: Analyse and quickly sketch ( )22 4y x= − + + . 

 

Answer: ( )22 4y x= − + +   is essentially 2y x= −  with 2x = − made the new zero 

and shifted upwards four units.  
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IN SUMMARY … 
 

We have just shown that the graph of any function of the form  
 

( )2y a x k b= − +  

 

is a symmetrical  U-shaped graph.  
 

If a is positive (as for ( )2700 56 19y x= − + , for example), then the U-

shape faces upwards.  
 

If a is negative (as for ( )289 17 92y x= − − + , for example), then the U-

shape faces downwards.  

 

The graph is symmetrical about the “dip” which occurs at the new zero, that is, 

at x k= . 

 

EXAMPLE: Describe the graph of ( )24 5 19y x= + +  

 

Answer: This is an upward facing U-shaped graph.  

Its dip occurs at 5x = − . It is a fairly steep U-shaped curve. 

 

 
We can go further …  Since any quantity squared, such as ( )25x + , is sure to be 

greater than or equal to zero, this means that ( )24 5 19y x= + +  is always sure to 

have value 19 and higher. Thus our U-shaped graph is sits above 19y =  and in fact 

equals 19 when 5x = − . This is clear from the picture of the graph too. 

 

If we want we can  add that the y-intercept occurs when 0x = , giving 

4 25 19 119y = ⋅ + = . 
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EXAMPLE: Describe the graph of ( )21
2 4

3
y x= − − −  

 

Answer: This is a downward facing U-shaped graph, symmetrical about the “new 

zero” of 2x =  shifted downward four units. It is a fairly broad U-shape. 

 

 
 

If we like we can add that the y-intercept occurs when 0x = , giving 
1 16
4 4

3 3
y = − ⋅ − = − . 

 

 

 

 

 

 

 

 

 

 

Some folk like to specifically note: 

 

 ( )2y a x k b= − +  takes values b and higher (if a is positive). 

 ( )2y a x k b= − +  takes values b and lower (if a is negative). 
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SOME LANGUAGE: 
 

The U-shaped graphs that arise from the curves ( )2y a x k b= − +  are called 

parabolas (because they turn out to precisely the curves ancient Greek scholars 

studied with regard to slices of cones, which they called parabolas).  

 

The place where the parabola dips down to its lowest point, if it is upward facing, or 

“dips up” to its highest point if it is downward facing is called the vertex of the 

parabola. 

 

 
 

We have seen that if ( )2y a x k b= − +  then the vertex occurs at the “new zero” 

which is x k= . The y-value here is ( )2 0y a k k b b b= − + = + = . Thus the 

coordinates of the vertex are: ( ),k b . 

 

[But don’t memorize this! Just understand what you see as you do any specific 

example!]  
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GRAPHING OTHER QUADRATICS:  
 

We’ll show that equations of each of the form:  

 

    2y ax bx c= + +  

 

are disguised versions of ( )2y a x k b= − +  and so are also U-shaped curves. 

 

 

GRAPHS OF 2y ax bx c= + +   

 

First the hard way … 

 

EXAMPLE: Describe the graph of 2 2 9y x x= + +  

 

HARD Answer: Look at the portion 2 2x x+ . If we wish to complete the square on 

this piece (See PART I), we need a “+1” along with it. Do we have this? No quite, but 

let’s make it happen: 

( )

( )

2

2

2

2

2 9

8 2 1

8 1

1 8

y x x

y x x

y x

y x

= + +

− = + +

− = +

= + +

 

   

Thus, 2 2 9y x x= + +  is an upward facing parabola, symmetrical about 1x = − , 

adopting values 8 and higher. The vertex occurs at ( )1,8− . 
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EXAMPLE: Describe the graph of 23 12 1y x x= + −  

 

HARD Answer: Let’s complete the square on the piece 23 12x x+ . As we saw in part 

I, it would be easier to complete the square by first multiplying this by 3. Let’s do 

it! 

 
23 9 36 3y x x= + −  

 

The box method shows that we want “+36” rather than “ -3.” 

 

 
 

Let’s add 39: 

( )

( )

( )

2

2

2

2

3 39 9 36 36

3 39 3 6

3 3 6 39

1
3 6 13

3

y x x

y x

y x

y x

+ = + +

+ = +

= + −

= + −

 

 

This is an upward facing parabola with 2x = −  the new zero for the x-values. 

(Why?). The vertex is at  ( )2, 13− − . 

 

EXERCISE: Show that ( )21
3 6 13

3
y x= + −  can be rewritten as ( )23 2 13y x= + − . 

Now it is very clear that 2x = −  is indeed the new zero for the x-values.  
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EXAMPLE: Describe the graph of 24 16 2y x x= − −  

 

HARD Answer: Following the methods of part I, let’s multiply through by 2− : 

 
22 4 32 8y x x− = + −  

 

Drawing the box shows that we want a constant term of +64: 

 

( )

( )

2

2

2

2 72 4 32 64

2 72 2 8

1
2 8 36

2

y x x

y x

y x

− + = + +

− + = +

= − + +

 

 

 

This is a downward facing parabola, symmetrical about 4x = − , taking values 36 and 

lower. The vertex is ( )4,36− . 
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CHECKING THE THEORY … 

These examples show indicate that every quadratic 2y ax bx c= + +  really is a 

transformed version of 2y x= , and so is either an upward facing U or a downward 

facing U.  

 

We’ll make use of this fact in a moment to develop a ridiculously easy way to graph 

quadratics . But in the meantime, here is an abstract proof in all its glory that 

shows this claim as true. 

 

CLAIM: 2y ax bx c= + +  is a transformed version of 2y x= . 

 

REASON (WARNING: TOUGH OPTIONAL READING!)  

We start with 2y ax bx c= + + .  

 

Let’s follow the method of part I by multiplying through by a  and then through  

by 4:  
2 24 4 4 4ay a x abx ac= + +  

Now consider the box that goes with this. 

 
This tells us how to adjust the constant term: 

( )

2 2

2 2 2 2

22

4 4 4 4

4 4 4 4

4 4 2

ay ac a x abx

ay ac b a x abx b

ay ac b ax b

− = +

− + = + +

− + = +

 

Solving for y  produces: 

( )
2

2

2

2

2

2

1 4
2

4 4

1
2

4 2

1
4

4 2

2

ac b
y ax b

a a

b
y a x stuff

a a

b
y a x stuff

a a

b
y a x stuff

a

−
= + +

  = + +  
  

 = + + 
 

 = + + 
 
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And despite the visual horror of this, we see that it is just the graph 2y x=  

transformed with some constants – just as we claimed! 

 

Thus 2y ax bx c= + +  is really of the form ( )2y a x h n= + +  in disguise and so is 

a parabola. It is upward facing if a is positive, downward facing if a is 
negative.  

 

All we need to take from this that 2y ax bx c= + +  is a parabola, upward or 

downward facing depending on the sign of a. 

 

 

NOW FOR … 
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THE EXTRAORDINARILY QUICK WAY  

TO GRAPH QUADRATICS 
 

As an example, consider 2 4 5y x x= + + .  

 

We know that this is going to be an upward-facing U-shaped graph.  

 

Pull out a common factor of x from the first two terms and write the expression as:  

 

 ( 4) 5y x x= + + . 

 

This shows that 0x =  and 4x = −  are interesting x -values that yield the same 

output of 5. Thus we have two symmetrical points on the parabola: ( )4,5−  and 

( )0,5 . 

 

Since we know that the parabola is symmetrical, the vertex of the parabola must be 

half-way between these two x-values that yield the same output, namely, at 2x = − . 

Substituting in gives the vertex at ( 2,1)− . 

 

These three points allow us to sketch the quadratic.  

 

 
 

 

EXAMPLE: Make a quick sketch of 22 3 7y x x= − + + .  

What are its x-and y-intercepts? 

 

Answer: This is a downward facing parabola. We have:  

 

( )22 3 7 2 3 7y x x x x= − + + = − + +  
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and this parabola has the value 7 at both 0x =  and 
3

2
x = . Because the graph is 

symmetrical, the vertex must be halfway between these values, at
3

4
x = . At this 

value, 
3 3 9 1

2 3 7 7 8
4 4 8 8

y
 = − ⋅ + + = + = 
 

. 

 

The graph appears:  

 

 
 

 

 

 

TWO x -VALUES THAT GIVE THE SAME OUTPUT FOR A QUADRATIC 

REPRESENT TWO SYMMETRICAL POINTS ON THE SYMMETRICAL CURVE.  

 

THE VERTEX OF THE PARABOLA MUST LIE HALF-WAY BETWEEN THESE 

x -VALUES.  
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QUADRATICS OF THE FORM ( )( )y a x p x q= − −  

 

Consider, for example, the formula:  

 

( ) ( )2 3 8y x x= − +  

 

If we expand brackets we see that this can be rewritten:  

 
22 10 48y x x= + −  

 

and so the graph of this function is again an (upward facing) parabola.  

 

In the same way, expanding brackets shows that ( ) ( )3 4 199y x x= − + −  is a 

downward facing parabola. (CHECK THIS!)  

 

In general: 

( )( )y a x p x q= − −  is a parabola; upward facing parabola if a is positive, 

downward facing if a is negative.   
 

Quadratics that happen to be in this factored form have the nice property that one 

can easily read off its x-intercepts. THEY HAVE TWO OBVIOUS “INTERESTING 

x -VALUES” 

 

 

EXAMPLE: Where does ( ) ( )2 3 8y x x= − +  cross the x-axis? What is the x-value 

of its vertex? Briefly describe the graph of this function. 

 

Answer: Can you see that 0y =  for 3x =  and for 8x = − ? Thus the graph of this 

function crosses the x-axis at these two values.  

 

 

Because the graph is symmetrical (an upward facing parabola), the vertex occurs 

halfway between these two zeros. That is, the vertex occurs at 
( )8 3 5

2 2
x

− +
= = − . 

Here the y-value of the graph is 
11 11 121 1

2 60
2 2 2 2

y
  = − = − = −  
  

. 

 

Just for kicks, the y-intercept is (put 0x = ): ( )( )2 3 8 48y = − = − . 
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The graph is thus:  

 

An upward facing parabola with vertex 
1 1
2 , 60
2 2

 − − 
 

, crossing the x-axis at  

8x = −  and 3x = . The y-intercept is 48y = −  

 

 

EXERCISE: Quickly sketch the following quadratics. (The key is to look for 

interesting x -values- that is, ones that give symmetrical locations on the 

symmetrical curve.) 

 

a) 26 1y x x= + −  

b) 24 20 80y x x= + +  

c) 26 3 30y x x= − −  

d) ( )( )2 5 11y x x= − −  

e) ( ) ( )3 4 4y x x= − + −  

f) ( )6y x x= − +  

 

 

EXERCISE: Here are three quadratics:  

 

(A) ( )( )3 3 5y x x= − +  

(B) 22 6 8y x x= + +  

(C) ( )22 4 7y x= − +  

 

Here are four questions:  

 

i) What is the smallest output the quadratic produces? 

ii) Where does the quadratic cross the x-axis? 

iii) Where does the quadratic cross the y-axis? 

iv) What are the coordinates of the vertex of the quadratic?  

 

For which of the three quadratics is it easiest to answer question i)?  

For which of the three quadratics is it easiest to answer question ii)?  

For which of the three quadratics is it easiest to answer question iii)?  

For which of the three quadratics is it easiest to answer question iv) ? 
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EXERCISE:  

a) Attempt to solve the equation 2 10 30 0x x+ + = . What do you deduce? 

b) Sketch the graph of 2 10 30y x x= + + . 

c) Use the graph to explain geometrically why there was is no solution to 
2 10 30 0x x+ + = .  

d) According to the graph, should there be solutions to 2 10 30 11x x+ + = ? If 

so, find them. 

e) Find a value b so that the equation 2 10 30x x b+ + =  has exactly one solution. 

 

 

 

EXERCISE:  

a) Show that ( )( ) ( )( ) ( )2 1 1 3 4 2y x x x x x x= − + + − + + −  is a quadratic in 

disguise. 

b) Sketch the quadratic. 

 

 

EXERCISE: Consider the quadratic 2y ax bx c= + + . Rewrite this as: 

  

( )y x ax b c= + +  

 

a) The x-coordinate of parabola’s vertex lies between which two values? 

b) Explain why the vertex of the parabola occurs at 
2

b
x

a
= − . 

 

COMMENT: Many teachers make their students memorise this result. For example, 

given 23 4 8y x x= + + , say, they like students to be able to say that its vertex lies 

at  
4 2

2 2 3 3

b
x

a
= − = − = −

⋅
. If speed is important to you, then great! If not, there is 

nothing wrong with writing ( )3 4 8y x x= + +  and saying that the vertex is halfway 

between 0x =  and 
4

3
x = − . 
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OPTIONAL ASIDE: For those that know complex numbers … 

 

GRAPHING COMPLEX SOLUTIONS 

As we have seen, yny quadratic 2y ax bx c= + +  can be written in the form 

( )2y a x h k= − + , and so is a transformed version of 2y x= , a U-shaped graph. 

 
 

 

 

If a is positive, we see that the function ( )2y a x h k= − +  takes all values k and 

higher, with the point ( , )h k  being the vertex of the parabola.  

 
If, along with a being positive, k is positive, then graph fails to cross the x-axis, 

meaning that the equation ( )2 0a x h k− + =  has no real solutions, only complex 

solutions:  

( )

( )

2

2

0a x h k

k
x h

a

k
x h i

a

k
x h i

a

− + =

− = −

− = ±

= ±
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Surprisingly, there an easy way to locate those solutions on the graph! 

 
With a ruler, measure a vertical line twice the height of the vertex. Then measure 

the horizontal distance q, either left or right, to the parabola. We have 
k

q
a

= . 

(CHECK THIS by showing that  ( )2 2a x h k k− + =  has solutions 
k

x h
a

= ± .)  

 

If we think of the plane of the graph as the complex plane, then the roots of the 

quadratic lie at the positions shown:  

 
A swift way to locate these points is to draw a circle with its two x-intercepts as 

the endpoints of a diameter as shown. This gives a circle of radius q and the two 

complex roots lie at the vertical endpoints of the circle.  
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Here is a typical question on quadratics that hope-to-be mathematics teachers 

must answer on a state licensure exam. How would you fare with this? 

 

TEACHER LICENSURE TYPE-QUESTION 

Geologists suspect that the cross-section shape of a newly discovered 

impact crater in the Australian outback can be well approximated by a 

parabola. The crater is 50 feet wide. 

  

They erect a platform across the crater and drop rope at ten foot intervals 

across the platform to measure the depth of the crater at these locations. 

The first rope, ten feet in from the rim of the crater, is 40 feet long. 

 
Placing this diagram on a coordinate system of your choice, find an equation 

for a parabolic arc that fits these initial data values. . 

 

Assuming that the crater is indeed parabolic, what is the depth of the 

crater?  

 

What, according to your equation, are the lengths of the remaining three 

ropes? 

 

To test their conjecture that the crater is indeed parabolic, two more ropes 

of lengths 50.4 feet are to be hung from the platform. Predict exactly 

where along the platform they should be placed so as to just touch the floor 

of the crater.  
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PART III: 

FITTING QUADRATICS TO DATA 
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FINDING QUADRACTICS WITH SPECIFIC ZEROS 
 

Here’s a question:  

 

 Write down a quadratic that crosses the x-axis at 2 and at 5. 
 

Thinking for a moment one might suggest: 

 

 ( )( )2 5y x x= − −  

 

This is a quadratic and we certainly have 0y =  for 2x =  and 5x = . 

 

Also, ( ) ( )3 2 5y x x= − −  works, as does ( ) ( )5 2 5y x x= − − −  and 

( ) ( )2 5
336 2

y x x
π

= − − −
+

. In fact, any quadratic of the form ( ) ( )2 5y a x x= − −  

does the trick. 

 

 

EXERCISE:   

a) Write down a quadratic with 677x =  and 6677x = −  as zeros. 

b) Write down a quadratic that crosses the x-axis at 0 and at 3− . 

c) Write down a quadratic that touches the x-axis only at 40x = . 

 

 

Here’s a slightly trickier question: 

 

EXAMPLE: Write down a quadratic 2y ax bx c= + +  with a, b and c each an integer 

that crosses the x-axis at 
4

3
x =  and at 

50

7
x = . 

 

Answer: Certainly 
4 50

3 7
y x x

  = − −  
  

 crosses the x-axis at these values but, 

when expanded, the coefficients involved won’t be integers. To “counteract” the 

denominators of a 3 and a 7, what if we inserted the number 21 into this formula? 

 

4 50
21

3 7
y x x

  = − −  
  
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This is certainly still a quadratic with the desired zeros. And if we expand 

this slightly we see:  

 

( ) ( )

4 50
3 7

3 7

4 50
3 7

3 7

3 4 7 50

y x x

y x x

y x x

  = ⋅ ⋅ − −  
  

   = − ⋅ −   
   

= − −

 

 

When this is expanded fully, it is clear now that all the coefficients involved 

will be integers. 

 

 

 

EXERCISE: Write examples of quadratics, involving only integers, with the 

following zeros:  

 

a) 
1

2
x =  and 

1

3
x =  

b) 
90

13
x = −  and 

19

2
x =  

c) 5x =  and 
3

7
x =  

d) Just one zero at 
3

14
11

x =  
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FITTING QUADRACTICS TO DATA 
 

EXAMPLE: Find a quadratic function that fits the following data: 

 

That is, find a quadratic function 2y ax bx c= + +  that passes through the three 

points ( )2,7 , ( )5,10  and ( )7,3 . 

 

Answer: The best thing to do is to just write down the answer! Here it is: 

 

( )( )
( ) ( )

( )( )
( )

( ) ( )5 7 2 7 2 5
7 10 3

3 5 3 2 5 2

x x x x x x
y

− − − − − −
= ⋅ + ⋅ +

− − ⋅ − ⋅
 

 

If one were to expand this out we’d see that this is indeed a quadratic function. 

But, of course, this is not the issue in one’s mind right now. Perhaps the question 

“From where does this formula come and what is it doing?” is more pressing!  

 

To understand this meaty formula start by plugging in the value 2x = . (Do it!) 

Notice that the second and third terms are designed to vanish at 2x =  and so we 

have only to contend with the first term:  

 

( )( )
( ) ( )
5 7

7
3 5

x x− −
⋅

− −
 

 

When 2x =  the numerator and the denominator match (the denominator was 

designed to do this) so that this term becomes: 

 

7 1⋅  

 

which is the value 7 we want from the table we were given. 
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For the value 5x =  only the middle term  

 

( ) ( )
( )
2 7

10
3 2

x x− −
⋅

⋅ −
 

“survives” and has value 
( )
( )

3 2
10 10

3 2

⋅ −
⋅ =
⋅ −

 for 5x = . 

 

In the same way, for the value 7x =  only the third term is non-vanishing and has 

value  
5 2
3 3
5 2

⋅
=

⋅
 

 

 

Thus the quadratic 
( )( )
( ) ( )

( )( )
( )

( ) ( )5 7 2 7 2 5
7 10 3

3 5 3 2 5 2

x x x x x x
y

− − − − − −
= ⋅ + ⋅ +

− − ⋅ − ⋅
 does 

indeed produce the values 7, 10 and 3 for the inputs 2, 5, and 7!   

 

 

COMMENT: If one so desired we can expand this to write:  

 

29 219
4

10 30
y x x= − + −  

           □ 

 

 

 

Despite the visual complication of the formula one can see that its construction is 

relatively straightforward: 

 

1. Write a series of numerators that vanish at all but one of the desired 

inputs.  

2. Create denominators that cancel the numerators when a specific 

input is entered. 

3. Use the desired y-values as coefficients. 
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As another example, here’s a quadratic that passes though the points ( )3,87A = , 

( )10,B π=  and ( )35, 2C = : 

 

( ) ( )
( ) ( )

( )( )
( ) ( )

( )( )10 35 3 35 3 10
87 2

7 32 7 28 32 25

x x x x x x
y π

− − − − − −
= + +

− − − ⋅
 

 

 

CHECK: Put in 3x = . Do  you get the output 87? Also, put in 10x =  and then 35x = . 

 

 

 

EXERCISE: Find a quadratic that fits the data  

 
 

Simplify your answer.  

 

 

 

EXAMPLE: Find a quadratic that fits the data  

 
 

Answer: 
( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )2 3 1 3 1 2

1 2 1 1 2 1

x x x x x x
y a b c

− − − − − −
= + +

− − ⋅ − ⋅
  □ 
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EXERCISE: Find a quadratic that goes through the points ( )3, 14− − , ( )2,1  and 

( )3, 2− . Simplify your answer as much as possible. 

 

 

 

 

EXERCISE: Something interesting happens if one tries to find a quadratic that 

fits the points ( )2,7 , ( )3,9  and ( )6,15 .  

 

a) Write down a quadratic that seems to fit these data points and simplify your 

answer.  

b) What happened and why? 

 

 

 

 

 

EXERCISE: Something goes wrong if one tries to find a quadratic that fits the 

data ( )1,0 , ( )1, 2−  and ( )1, 1− − . 

 

a) Try to write a quadratic that fits this data. 

b) What goes wrong and why? 

 

CHALLENGE: Find an equation of the form 2x ay by c= + +  that fits this data! 

 

 

 

 

 

 

 

 


